diff options
Diffstat (limited to 'kern/linux-ipmi-2.5.44-v12.diff')
| -rw-r--r-- | kern/linux-ipmi-2.5.44-v12.diff | 7362 | 
1 files changed, 7362 insertions, 0 deletions
| diff --git a/kern/linux-ipmi-2.5.44-v12.diff b/kern/linux-ipmi-2.5.44-v12.diff new file mode 100644 index 0000000..b0350d6 --- /dev/null +++ b/kern/linux-ipmi-2.5.44-v12.diff @@ -0,0 +1,7362 @@ +diff -urN linux.orig/CREDITS linux/CREDITS +--- linux.orig/CREDITS	Mon Oct 21 13:25:57 2002 ++++ linux/CREDITS	Mon Oct 21 13:27:53 2002 +@@ -2161,9 +2161,15 @@ +  + N: Corey Minyard + E: minyard@wf-rch.cirr.com ++E: minyard@mvista.com ++W: http://home.attbi.com/~minyard + D: Sony CDU31A CDROM Driver +-S: 1805 Marquette +-S: Richardson, Texas 75081 ++D: IPMI driver ++D: Various networking fixes long ago ++D: Original ppc_md work ++D: Shared zlib ++S: 7406 Wheat Field Rd ++S: Garland, Texas 75066 + S: USA +  + N: Patrick Mochel +diff -urN linux.orig/Documentation/IPMI.txt linux/Documentation/IPMI.txt +--- linux.orig/Documentation/IPMI.txt	Wed Dec 31 18:00:00 1969 ++++ linux/Documentation/IPMI.txt	Tue Oct 22 09:35:21 2002 +@@ -0,0 +1,317 @@ ++ ++                          The Linux IPMI Driver ++			  --------------------- ++			      Corey Minyard ++			  <minyard@mvista.com> ++			    <minyard@acm.org> ++ ++This document describes how to use the IPMI driver for Linux.  If you ++are not familiar with IPMI itself, see the web site at ++http://www.intel.com/design/servers/ipmi/index.htm.  IPMI is a big ++subject and I can't cover it all here! ++ ++Basic Design ++------------ ++ ++The Linux IPMI driver is designed to be very modular and flexible, you ++only need to take the pieces you need and you can use it in many ++different ways.  Because of that, it's broken into many chunks of ++code.  These chunks are: ++ ++ipmi_msghandler - This is the central piece of software for the IPMI ++system.  It handles all messages, message timing, and responses.  The ++IPMI users tie into this, and the IPMI physical interfaces (called ++System Management Interfaces, or SMIs) also tie in here.  This ++provides the kernelland interface for IPMI, but does not provide an ++interface for use by application processes. ++ ++ipmi_devintf - This provides a userland IOCTL interface for the IPMI ++driver, each open file for this device ties in to the message handler ++as an IPMI user. ++ ++ipmi_kcs_drv - A driver for the KCS SMI.  Most system have a KCS ++interface for IPMI. ++ ++ ++Much documentation for the interface is in the include files.  The ++IPMI include files are: ++ ++ipmi.h - Contains the user interface and IOCTL interface for IPMI. ++ ++ipmi_smi.h - Contains the interface for SMI drivers to use. ++ ++ipmi_msgdefs.h - General definitions for base IPMI messaging. ++ ++ ++Addressing ++---------- ++ ++The IPMI addressing works much like IP addresses, you have an overlay ++to handle the different address types.  The overlay is: ++ ++  struct ipmi_addr ++  { ++	int   addr_type; ++	short channel; ++	char  data[IPMI_MAX_ADDR_SIZE]; ++  }; ++ ++The addr_type determines what the address really is.  The driver ++currently understands two different types of addresses. ++ ++"System Interface" addresses are defined as: ++ ++  struct ipmi_system_interface_addr ++  { ++	int   addr_type; ++	short channel; ++  }; ++ ++and the type is IPMI_SYSTEM_INTERFACE_ADDR_TYPE.  This is used for talking ++straight to the BMC on the current card.  The channel must be ++IPMI_BMC_CHANNEL. ++ ++Messages that are destined to go out on the IPMB bus use the ++IPMI_IPMB_ADDR_TYPE address type.  The format is ++ ++  struct ipmi_ipmb_addr ++  { ++	int           addr_type; ++	short         channel; ++	unsigned char slave_addr; ++	unsigned char lun; ++  }; ++ ++The "channel" here is generally zero, but some devices support more ++than one channel, it corresponds to the channel as defined in the IPMI ++spec. ++ ++ ++Messages ++-------- ++ ++Messages are defined as: ++ ++struct ipmi_msg ++{ ++	unsigned char netfn; ++	unsigned char lun; ++	unsigned char cmd; ++	unsigned char *data; ++	int           data_len; ++}; ++ ++The driver takes care of adding/stripping the header information.  The ++data portion is just the data to be send (do NOT put addressing info ++here) or the response.  Note that the completion code of a response is ++the first item in "data", it is not stripped out because that is how ++all the messages are defined in the spec (and thus makes counting the ++offsets a little easier :-). ++ ++When using the IOCTL interface from userland, you must provide a block ++of data for "data", fill it, and set data_len to the length of the ++block of data, even when receiving messages.  Otherwise the driver ++will have no place to put the message. ++ ++Messages coming up from the message handler in kernelland will come in ++as: ++ ++  struct ipmi_recv_msg ++  { ++	struct list_head link; ++ ++	/* The type of message as defined in the "Receive Types" ++           defines above. */ ++	int         recv_type; ++ ++	ipmi_user_t      *user; ++	struct ipmi_addr addr; ++	long             msgid; ++	struct ipmi_msg  msg; ++ ++	/* Call this when done with the message.  It will presumably free ++	   the message and do any other necessary cleanup. */ ++	void (*done)(struct ipmi_recv_msg *msg); ++ ++	/* Place-holder for the data, don't make any assumptions about ++	   the size or existence of this, since it may change. */ ++	unsigned char   msg_data[IPMI_MAX_MSG_LENGTH]; ++  }; ++ ++You should look at the receive type and handle the message ++appropriately. ++ ++ ++The Upper Layer Interface (Message Handler) ++------------------------------------------- ++ ++The upper layer of the interface provides the users with a consistent ++view of the IPMI interfaces.  It allows multiple SMI interfaces to be ++addressed (because some boards actually have multiple BMCs on them) ++and the user should not have to care what type of SMI is below them. ++ ++ ++Creating the User ++ ++To user the message handler, you must first create a user using ++ipmi_create_user.  The interface number specifies which SMI you want ++to connect to, and you must supply callback functions to be called ++when data comes in.  The callback function can run at interrupt level, ++so be careful using the callbacks.  This also allows to you pass in a ++piece of data, the handler_data, that will be passed back to you on ++all calls. ++ ++Once you are done, call ipmi_destroy_user() to get rid of the user. ++ ++From userland, opening the device automatically creates a user, and ++closing the device automatically destroys the user. ++ ++ ++Messaging ++ ++To send a message from kernel-land, the ipmi_request() call does ++pretty much all message handling.  Most of the parameter are ++self-explanatory.  However, it takes a "msgid" parameter.  This is NOT ++the sequence number of messages.  It is simply a long value that is ++passed back when the response for the message is returned.  You may ++use it for anything you like. ++ ++Responses come back in the function pointed to by the ipmi_recv_hndl ++field of the "handler" that you passed in to ipmi_create_user(). ++Remember again, these may be running at interrupt level.  Remember to ++look at the receive type, too. ++ ++From userland, you fill out an ipmi_req_t structure and use the ++IPMICTL_SEND_COMMAND ioctl.  For incoming stuff, you can use select() ++or poll() to wait for messages to come in.  However, you cannot use ++read() to get them, you must call the IPMICTL_RECEIVE_MSG with the ++ipmi_recv_t structure to actually get the message.  Remember that you ++must supply a pointer to a block of data in the msg.data field, and ++you must fill in the msg.data_len field with the size of the data. ++This gives the receiver a place to actually put the message. ++ ++If the message cannot fit into the data you provide, you will get an ++EMSGSIZE error and the driver will leave the data in the receive ++queue.  If you want to get it and have it truncate the message, us ++the IPMICTL_RECEIVE_MSG_TRUNC ioctl. ++ ++When you send a command (which is defined by the lowest-order bit of ++the netfn per the IPMI spec) on the IPMB bus, the driver will ++automatically assign the sequence number to the command and save the ++command.  If the response is not receive in the IMPI-specified 5 ++seconds, it will generate a response automatically saying the command ++timed out.  If an unsolicited response comes in (if it was after 5 ++seconds, for instance), that response will be ignored. ++ ++In kernelland, after you receive a message and are done with it, you ++MUST call ipmi_free_recv_msg() on it, or you will leak messages.  Note ++that you should NEVER mess with the "done" field of a message, that is ++required to properly clean up the message. ++ ++Note that when sending, there is an ipmi_request_supply_msgs() call ++that lets you supply the smi and receive message.  This is useful for ++pieces of code that need to work even if the system is out of buffers ++(the watchdog timer uses this, for instance).  You supply your own ++buffer and own free routines.  This is not recommended for normal use, ++though, since it is tricky to manage your own buffers. ++ ++ ++Events and Incoming Commands ++ ++The driver takes care of polling for IPMI events and receiving ++commands (commands are messages that are not responses, they are ++commands that other things on the IPMB bus have sent you).  To receive ++these, you must register for them, they will not automatically be sent ++to you. ++ ++To receive events, you must call ipmi_set_gets_events() and set the ++"val" to non-zero.  Any events that have been received by the driver ++since startup will immediately be delivered to the first user that ++registers for events.  After that, if multiple users are registered ++for events, they will all receive all events that come in. ++ ++For receiving commands, you have to individually register commands you ++want to receive.  Call ipmi_register_for_cmd() and supply the netfn ++and command name for each command you want to receive.  Only one user ++may be registered for each netfn/cmd, but different users may register ++for different commands. ++ ++From userland, equivalent IOCTLs are provided to do these functions. ++ ++ ++The Lower Layer (SMI) Interface ++------------------------------- ++ ++As mentioned before, multiple SMI interfaces may be registered to the ++message handler, each of these is assigned an interface number when ++they register with the message handler.  They are generally assigned ++in the order they register, although if an SMI unregisters and then ++another one registers, all bets are off. ++ ++The ipmi_smi.h defines the interface for SMIs, see that for more ++details. ++ ++ ++The KCS Driver ++-------------- ++ ++The KCS driver allows up to 4 KCS interfaces to be configured in the ++system.  By default, the driver will register one KCS interface at the ++spec-specified address 0xca2 without interrupts.  You can change this ++at module load time (for a module) with: ++ ++  insmod ipmi_kcs_drv.o kcs_addrs=<addr1>,<addr2>.. kcs_irqs=<irq1>,<irq2>.. ++ ++When compiled into the kernel, the addresses can be specified on the ++kernel command line as: ++ ++  ipmi_kcs=<addr1>,<irq1>,<addr2>,<irq2>.... ++ ++If you specify zero for an address, the driver will use 0xca2.  If you ++specify zero for in irq, the driver will run polled. ++ ++If you have high-res timers compiled into the kernel, the driver will ++use them to provide much better performance.  Note that if you do not ++have high-res timers enabled in the kernel and you don't have ++interrupts enabled, the driver will run VERY slowly.  Don't blame me, ++the KCS interface sucks. ++ ++ ++Other Pieces ++------------ ++ ++Watchdog ++ ++A watchdog timer is provided that implements the Linux-standard ++watchdog timer interface.  It has three module parameters that can be ++used to control it: ++ ++  insmod ipmi_watchdog timeout=<t> pretimeout=<t> action=<action type> ++      preaction=<preaction type> ++ ++The timeout is the number of seconds to the action, and the pretimeout ++is the amount of seconds before the reset that the pre-timeout panic will ++occur (if pretimeout is zero, then pretimeout will not be enabled). ++ ++The action may be "reset", "power_cycle", or "power_off", and ++specifies what to do when the timer times out, and defaults to ++"reset". ++ ++The preaction may be "pre_smi" for an indication through the SMI ++interface, "pre_int" for an indication through the SMI with an ++interrupts, and "pre_nmi" for a NMI on a preaction. ++ ++When compiled into the kernel, the kernel command line is available ++for configuring the watchdog: ++ ++  ipmi_wdog=<timeout>[,<pretimeout>[,<option>[,<options>....]]] ++ ++The options are the actions and preaction above (if an option ++controlling the same thing is specified twice, the last is taken).  An ++options "start_now" is also there, if included, the watchdog will ++start running immediately when all the drivers are ready, it doesn't ++have to have a user hooked up to start it. ++ ++The watchdog will panic and start a 120 second reset timeout if it ++gets a pre-action.  During a panic or a reboot, the watchdog will ++start a 120 timer if it is running to make sure the reboot occurs. +diff -urN linux.orig/arch/i386/kernel/Makefile linux/arch/i386/kernel/Makefile +--- linux.orig/arch/i386/kernel/Makefile	Mon Oct 21 13:25:58 2002 ++++ linux/arch/i386/kernel/Makefile	Thu Oct 24 12:48:14 2002 +@@ -9,7 +9,7 @@ + obj-y	:= process.o semaphore.o signal.o entry.o traps.o irq.o vm86.o \ + 		ptrace.o i8259.o ioport.o ldt.o setup.o time.o sys_i386.o \ + 		pci-dma.o i386_ksyms.o i387.o bluesmoke.o dmi_scan.o \ +-		bootflag.o ++		bootflag.o nmi.o +  + obj-y				+= cpu/ + obj-y				+= timers/ +@@ -23,7 +23,7 @@ + obj-$(CONFIG_ACPI_SLEEP)	+= acpi_wakeup.o + obj-$(CONFIG_X86_SMP)		+= smp.o smpboot.o trampoline.o + obj-$(CONFIG_X86_MPPARSE)	+= mpparse.o +-obj-$(CONFIG_X86_LOCAL_APIC)	+= apic.o nmi.o ++obj-$(CONFIG_X86_LOCAL_APIC)	+= apic.o nmi_watchdog.o + obj-$(CONFIG_X86_IO_APIC)	+= io_apic.o + obj-$(CONFIG_SOFTWARE_SUSPEND)	+= suspend.o + obj-$(CONFIG_X86_NUMAQ)		+= numaq.o +diff -urN linux.orig/arch/i386/kernel/i386_ksyms.c linux/arch/i386/kernel/i386_ksyms.c +--- linux.orig/arch/i386/kernel/i386_ksyms.c	Mon Oct 21 13:25:58 2002 ++++ linux/arch/i386/kernel/i386_ksyms.c	Thu Oct 24 14:01:05 2002 +@@ -90,6 +90,9 @@ + EXPORT_SYMBOL(cpu_khz); + EXPORT_SYMBOL(apm_info); +  ++EXPORT_SYMBOL(request_nmi); ++EXPORT_SYMBOL(release_nmi); ++ + #ifdef CONFIG_DEBUG_IOVIRT + EXPORT_SYMBOL(__io_virt_debug); + #endif +@@ -176,8 +179,6 @@ +  + EXPORT_SYMBOL_GPL(register_profile_notifier); + EXPORT_SYMBOL_GPL(unregister_profile_notifier); +-EXPORT_SYMBOL_GPL(set_nmi_callback); +-EXPORT_SYMBOL_GPL(unset_nmi_callback); +   + #undef memcpy + #undef memset +diff -urN linux.orig/arch/i386/kernel/irq.c linux/arch/i386/kernel/irq.c +--- linux.orig/arch/i386/kernel/irq.c	Mon Oct 21 13:25:58 2002 ++++ linux/arch/i386/kernel/irq.c	Tue Oct 22 12:08:20 2002 +@@ -131,6 +131,8 @@ +  * Generic, controller-independent functions: +  */ +  ++extern void nmi_append_user_names(struct seq_file *p); ++ + int show_interrupts(struct seq_file *p, void *v) + { + 	int i, j; +@@ -166,6 +168,8 @@ + 	for (j = 0; j < NR_CPUS; j++) + 		if (cpu_online(j)) + 			p += seq_printf(p, "%10u ", nmi_count(j)); ++	seq_printf(p, "                "); ++	nmi_append_user_names(p); + 	seq_putc(p, '\n'); + #if CONFIG_X86_LOCAL_APIC + 	seq_printf(p, "LOC: "); +diff -urN linux.orig/arch/i386/kernel/nmi.c linux/arch/i386/kernel/nmi.c +--- linux.orig/arch/i386/kernel/nmi.c	Mon Oct 21 13:25:45 2002 ++++ linux/arch/i386/kernel/nmi.c	Fri Oct 25 08:21:22 2002 +@@ -1,404 +1,239 @@ + /* +  *  linux/arch/i386/nmi.c +  * +- *  NMI watchdog support on APIC systems ++ *  NMI support. +  * +- *  Started by Ingo Molnar <mingo@redhat.com> ++ *  Corey Minyard <cminyard@mvista.com> +  * +- *  Fixes: +- *  Mikael Pettersson	: AMD K7 support for local APIC NMI watchdog. +- *  Mikael Pettersson	: Power Management for local APIC NMI watchdog. +- *  Mikael Pettersson	: Pentium 4 support for local APIC NMI watchdog. ++ *  Moved some of this over from traps.c. +  */ +  + #include <linux/config.h> +-#include <linux/mm.h> +-#include <linux/irq.h> + #include <linux/delay.h> +-#include <linux/bootmem.h> +-#include <linux/smp_lock.h> ++#include <linux/spinlock.h> ++#include <linux/list.h> ++#include <linux/sched.h> ++#include <linux/errno.h> ++#include <linux/rcupdate.h> ++#include <linux/seq_file.h> ++#include <linux/notifier.h> + #include <linux/interrupt.h> +-#include <linux/mc146818rtc.h> +-#include <linux/kernel_stat.h> +  +-#include <asm/smp.h> +-#include <asm/mtrr.h> +-#include <asm/mpspec.h> +- +-unsigned int nmi_watchdog = NMI_NONE; +-static unsigned int nmi_hz = HZ; +-unsigned int nmi_perfctr_msr;	/* the MSR to reset in NMI handler */ +-extern void show_registers(struct pt_regs *regs); +- +-#define K7_EVNTSEL_ENABLE	(1 << 22) +-#define K7_EVNTSEL_INT		(1 << 20) +-#define K7_EVNTSEL_OS		(1 << 17) +-#define K7_EVNTSEL_USR		(1 << 16) +-#define K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING	0x76 +-#define K7_NMI_EVENT		K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING +- +-#define P6_EVNTSEL0_ENABLE	(1 << 22) +-#define P6_EVNTSEL_INT		(1 << 20) +-#define P6_EVNTSEL_OS		(1 << 17) +-#define P6_EVNTSEL_USR		(1 << 16) +-#define P6_EVENT_CPU_CLOCKS_NOT_HALTED	0x79 +-#define P6_NMI_EVENT		P6_EVENT_CPU_CLOCKS_NOT_HALTED +- +-#define MSR_P4_MISC_ENABLE	0x1A0 +-#define MSR_P4_MISC_ENABLE_PERF_AVAIL	(1<<7) +-#define MSR_P4_MISC_ENABLE_PEBS_UNAVAIL	(1<<12) +-#define MSR_P4_PERFCTR0		0x300 +-#define MSR_P4_CCCR0		0x360 +-#define P4_ESCR_EVENT_SELECT(N)	((N)<<25) +-#define P4_ESCR_OS		(1<<3) +-#define P4_ESCR_USR		(1<<2) +-#define P4_CCCR_OVF_PMI		(1<<26) +-#define P4_CCCR_THRESHOLD(N)	((N)<<20) +-#define P4_CCCR_COMPLEMENT	(1<<19) +-#define P4_CCCR_COMPARE		(1<<18) +-#define P4_CCCR_REQUIRED	(3<<16) +-#define P4_CCCR_ESCR_SELECT(N)	((N)<<13) +-#define P4_CCCR_ENABLE		(1<<12) +-/* Set up IQ_COUNTER0 to behave like a clock, by having IQ_CCCR0 filter +-   CRU_ESCR0 (with any non-null event selector) through a complemented +-   max threshold. [IA32-Vol3, Section 14.9.9] */ +-#define MSR_P4_IQ_COUNTER0	0x30C +-#define MSR_P4_IQ_CCCR0		0x36C +-#define MSR_P4_CRU_ESCR0	0x3B8 +-#define P4_NMI_CRU_ESCR0	(P4_ESCR_EVENT_SELECT(0x3F)|P4_ESCR_OS|P4_ESCR_USR) +-#define P4_NMI_IQ_CCCR0	\ +-	(P4_CCCR_OVF_PMI|P4_CCCR_THRESHOLD(15)|P4_CCCR_COMPLEMENT|	\ +-	 P4_CCCR_COMPARE|P4_CCCR_REQUIRED|P4_CCCR_ESCR_SELECT(4)|P4_CCCR_ENABLE) +- +-int __init check_nmi_watchdog (void) +-{ +-	unsigned int prev_nmi_count[NR_CPUS]; +-	int cpu; +- +-	printk(KERN_INFO "testing NMI watchdog ... "); +- +-	for (cpu = 0; cpu < NR_CPUS; cpu++) +-		prev_nmi_count[cpu] = irq_stat[cpu].__nmi_count; +-	local_irq_enable(); +-	mdelay((10*1000)/nmi_hz); // wait 10 ticks +- +-	/* FIXME: Only boot CPU is online at this stage.  Check CPUs +-           as they come up. */ +-	for (cpu = 0; cpu < NR_CPUS; cpu++) { +-		if (!cpu_online(cpu)) +-			continue; +-		if (nmi_count(cpu) - prev_nmi_count[cpu] <= 5) { +-			printk("CPU#%d: NMI appears to be stuck!\n", cpu); +-			return -1; +-		} +-	} +-	printk("OK.\n"); ++#include <asm/io.h> ++#include <asm/nmi.h> +  +-	/* now that we know it works we can reduce NMI frequency to +-	   something more reasonable; makes a difference in some configs */ +-	if (nmi_watchdog == NMI_LOCAL_APIC) +-		nmi_hz = 1; ++extern void show_registers(struct pt_regs *regs); +  +-	return 0; +-} ++/*  ++ * A list of handlers for NMIs.  This list will be called in order ++ * when an NMI from an otherwise unidentifiable source comes in.  If ++ * one of these handles the NMI, it should return NOTIFY_OK, otherwise ++ * it should return NOTIFY_DONE.  NMI handlers cannot claim spinlocks, ++ * so we have to handle freeing these in a different manner.  A ++ * spinlock protects the list from multiple writers.  When something ++ * is removed from the list, it is thrown into another list (with ++ * another link, so the "next" element stays valid) and scheduled to ++ * run as an rcu.  When the rcu runs, it is guaranteed that nothing in ++ * the NMI code will be using it. ++ */ ++static struct list_head nmi_handler_list = LIST_HEAD_INIT(nmi_handler_list); ++static spinlock_t       nmi_handler_lock = SPIN_LOCK_UNLOCKED; +  +-static int __init setup_nmi_watchdog(char *str) ++/* ++ * To free the list item, we use an rcu.  The rcu-function will not ++ * run until all processors have done a context switch, gone idle, or ++ * gone to a user process, so it's guaranteed that when this runs, any ++ * NMI handler running at release time has completed and the list item ++ * can be safely freed. ++ */ ++static void free_nmi_handler(void *arg) + { +-	int nmi; ++	struct nmi_handler *handler = arg; +  +-	get_option(&str, &nmi); +- +-	if (nmi >= NMI_INVALID) +-		return 0; +-	if (nmi == NMI_NONE) +-		nmi_watchdog = nmi; +-	/* +-	 * If any other x86 CPU has a local APIC, then +-	 * please test the NMI stuff there and send me the +-	 * missing bits. Right now Intel P6/P4 and AMD K7 only. +-	 */ +-	if ((nmi == NMI_LOCAL_APIC) && +-			(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && +-			(boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15)) +-		nmi_watchdog = nmi; +-	if ((nmi == NMI_LOCAL_APIC) && +-			(boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && +-			(boot_cpu_data.x86 == 6)) +-		nmi_watchdog = nmi; +-	/* +-	 * We can enable the IO-APIC watchdog +-	 * unconditionally. +-	 */ +-	if (nmi == NMI_IO_APIC) +-		nmi_watchdog = nmi; +-	return 1; ++	INIT_LIST_HEAD(&(handler->link)); ++	complete(&(handler->complete)); + } +  +-__setup("nmi_watchdog=", setup_nmi_watchdog); +- +-#ifdef CONFIG_PM ++int request_nmi(struct nmi_handler *handler) ++{ ++	struct list_head   *curr; ++	struct nmi_handler *curr_h = NULL; +  +-#include <linux/pm.h> ++	if (!list_empty(&(handler->link))) ++		return -EBUSY; +  +-struct pm_dev *nmi_pmdev; ++	spin_lock(&nmi_handler_lock); +  +-static void disable_apic_nmi_watchdog(void) +-{ +-	switch (boot_cpu_data.x86_vendor) { +-	case X86_VENDOR_AMD: +-		wrmsr(MSR_K7_EVNTSEL0, 0, 0); +-		break; +-	case X86_VENDOR_INTEL: +-		switch (boot_cpu_data.x86) { +-		case 6: +-			wrmsr(MSR_P6_EVNTSEL0, 0, 0); ++	__list_for_each(curr, &nmi_handler_list) { ++		curr_h = list_entry(curr, struct nmi_handler, link); ++		if (curr_h->priority <= handler->priority) + 			break; +-		case 15: +-			wrmsr(MSR_P4_IQ_CCCR0, 0, 0); +-			wrmsr(MSR_P4_CRU_ESCR0, 0, 0); +-			break; +-		} +-		break; + 	} +-} +  +-static int nmi_pm_callback(struct pm_dev *dev, pm_request_t rqst, void *data) +-{ +-	switch (rqst) { +-	case PM_SUSPEND: +-		disable_apic_nmi_watchdog(); +-		break; +-	case PM_RESUME: +-		setup_apic_nmi_watchdog(); +-		break; +-	} ++	/* list_add_rcu takes care of memory barrier */ ++	if (curr_h) ++		if (curr_h->priority <= handler->priority) ++			list_add_rcu(&(handler->link), curr_h->link.prev); ++		else ++			list_add_rcu(&(handler->link), &(curr_h->link)); ++	else ++		list_add_rcu(&(handler->link), &nmi_handler_list); ++ ++	spin_unlock(&nmi_handler_lock); + 	return 0; + } +  +-struct pm_dev * set_nmi_pm_callback(pm_callback callback) ++void release_nmi(struct nmi_handler *handler) + { +-	apic_pm_unregister(nmi_pmdev); +-	return apic_pm_register(PM_SYS_DEV, 0, callback); +-} ++	spin_lock(&nmi_handler_lock); ++	list_del_rcu(&(handler->link)); ++	init_completion(&(handler->complete)); ++	call_rcu(&(handler->rcu), free_nmi_handler, handler); ++	spin_unlock(&nmi_handler_lock); +  +-void unset_nmi_pm_callback(struct pm_dev * dev) +-{ +-	apic_pm_unregister(dev); +-	nmi_pmdev = apic_pm_register(PM_SYS_DEV, 0, nmi_pm_callback); +-} +-  +-static void nmi_pm_init(void) +-{ +-	if (!nmi_pmdev) +-		nmi_pmdev = apic_pm_register(PM_SYS_DEV, 0, nmi_pm_callback); ++	/* Wait for handler to finish being freed.  This can't be ++           interrupted, we must wait until it finished. */ ++	wait_for_completion(&(handler->complete)); + } +  +-#define __pminit	/*empty*/ +- +-#else	/* CONFIG_PM */ +- +-static inline void nmi_pm_init(void) { } +- +-#define __pminit	__init +- +-#endif	/* CONFIG_PM */ +- +-/* +- * Activate the NMI watchdog via the local APIC. +- * Original code written by Keith Owens. +- */ +- +-static void __pminit clear_msr_range(unsigned int base, unsigned int n) ++void nmi_append_user_names(struct seq_file *p) + { +-	unsigned int i; ++	struct list_head   *curr; ++	struct nmi_handler *curr_h; +  +-	for(i = 0; i < n; ++i) +-		wrmsr(base+i, 0, 0); ++	spin_lock(&nmi_handler_lock); ++	__list_for_each(curr, &nmi_handler_list) { ++		curr_h = list_entry(curr, struct nmi_handler, link); ++		if (curr_h->dev_name) ++			p += seq_printf(p, " %s", curr_h->dev_name); ++	} ++	spin_unlock(&nmi_handler_lock); + } +  +-static void __pminit setup_k7_watchdog(void) ++static void mem_parity_error(unsigned char reason, struct pt_regs * regs) + { +-	unsigned int evntsel; +- +-	nmi_perfctr_msr = MSR_K7_PERFCTR0; +- +-	clear_msr_range(MSR_K7_EVNTSEL0, 4); +-	clear_msr_range(MSR_K7_PERFCTR0, 4); ++	printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n"); ++	printk("You probably have a hardware problem with your RAM chips\n"); +  +-	evntsel = K7_EVNTSEL_INT +-		| K7_EVNTSEL_OS +-		| K7_EVNTSEL_USR +-		| K7_NMI_EVENT; +- +-	wrmsr(MSR_K7_EVNTSEL0, evntsel, 0); +-	Dprintk("setting K7_PERFCTR0 to %08lx\n", -(cpu_khz/nmi_hz*1000)); +-	wrmsr(MSR_K7_PERFCTR0, -(cpu_khz/nmi_hz*1000), -1); +-	apic_write(APIC_LVTPC, APIC_DM_NMI); +-	evntsel |= K7_EVNTSEL_ENABLE; +-	wrmsr(MSR_K7_EVNTSEL0, evntsel, 0); ++	/* Clear and disable the memory parity error line. */ ++	reason = (reason & 0xf) | 4; ++	outb(reason, 0x61); + } +  +-static void __pminit setup_p6_watchdog(void) ++static void io_check_error(unsigned char reason, struct pt_regs * regs) + { +-	unsigned int evntsel; +- +-	nmi_perfctr_msr = MSR_P6_PERFCTR0; +- +-	clear_msr_range(MSR_P6_EVNTSEL0, 2); +-	clear_msr_range(MSR_P6_PERFCTR0, 2); +- +-	evntsel = P6_EVNTSEL_INT +-		| P6_EVNTSEL_OS +-		| P6_EVNTSEL_USR +-		| P6_NMI_EVENT; +- +-	wrmsr(MSR_P6_EVNTSEL0, evntsel, 0); +-	Dprintk("setting P6_PERFCTR0 to %08lx\n", -(cpu_khz/nmi_hz*1000)); +-	wrmsr(MSR_P6_PERFCTR0, -(cpu_khz/nmi_hz*1000), 0); +-	apic_write(APIC_LVTPC, APIC_DM_NMI); +-	evntsel |= P6_EVNTSEL0_ENABLE; +-	wrmsr(MSR_P6_EVNTSEL0, evntsel, 0); +-} ++	unsigned long i; +  +-static int __pminit setup_p4_watchdog(void) +-{ +-	unsigned int misc_enable, dummy; ++	printk("NMI: IOCK error (debug interrupt?)\n"); ++	show_registers(regs); +  +-	rdmsr(MSR_P4_MISC_ENABLE, misc_enable, dummy); +-	if (!(misc_enable & MSR_P4_MISC_ENABLE_PERF_AVAIL)) +-		return 0; +- +-	nmi_perfctr_msr = MSR_P4_IQ_COUNTER0; +- +-	if (!(misc_enable & MSR_P4_MISC_ENABLE_PEBS_UNAVAIL)) +-		clear_msr_range(0x3F1, 2); +-	/* MSR 0x3F0 seems to have a default value of 0xFC00, but current +-	   docs doesn't fully define it, so leave it alone for now. */ +-	clear_msr_range(0x3A0, 31); +-	clear_msr_range(0x3C0, 6); +-	clear_msr_range(0x3C8, 6); +-	clear_msr_range(0x3E0, 2); +-	clear_msr_range(MSR_P4_CCCR0, 18); +-	clear_msr_range(MSR_P4_PERFCTR0, 18); +- +-	wrmsr(MSR_P4_CRU_ESCR0, P4_NMI_CRU_ESCR0, 0); +-	wrmsr(MSR_P4_IQ_CCCR0, P4_NMI_IQ_CCCR0 & ~P4_CCCR_ENABLE, 0); +-	Dprintk("setting P4_IQ_COUNTER0 to 0x%08lx\n", -(cpu_khz/nmi_hz*1000)); +-	wrmsr(MSR_P4_IQ_COUNTER0, -(cpu_khz/nmi_hz*1000), -1); +-	apic_write(APIC_LVTPC, APIC_DM_NMI); +-	wrmsr(MSR_P4_IQ_CCCR0, P4_NMI_IQ_CCCR0, 0); +-	return 1; ++	/* Re-enable the IOCK line, wait for a few seconds */ ++	reason = (reason & 0xf) | 8; ++	outb(reason, 0x61); ++	i = 2000; ++	while (--i) udelay(1000); ++	reason &= ~8; ++	outb(reason, 0x61); + } +  +-void __pminit setup_apic_nmi_watchdog (void) ++static void unknown_nmi_error(struct pt_regs * regs, int cpu) + { +-	switch (boot_cpu_data.x86_vendor) { +-	case X86_VENDOR_AMD: +-		if (boot_cpu_data.x86 != 6) +-			return; +-		setup_k7_watchdog(); +-		break; +-	case X86_VENDOR_INTEL: +-		switch (boot_cpu_data.x86) { +-		case 6: +-			setup_p6_watchdog(); +-			break; +-		case 15: +-			if (!setup_p4_watchdog()) +-				return; +-			break; +-		default: +-			return; +-		} +-		break; +-	default: ++#ifdef CONFIG_MCA ++	/* Might actually be able to figure out what the guilty party ++	* is. */ ++	if( MCA_bus ) { ++		mca_handle_nmi(); + 		return; + 	} +-	nmi_pm_init(); ++#endif ++	printk("Uhhuh. Received NMI for unknown reason on CPU %d.\n", cpu); ++	printk("Dazed and confused, but trying to continue\n"); ++	printk("Do you have a strange power saving mode enabled?\n"); + } +  +-static spinlock_t nmi_print_lock = SPIN_LOCK_UNLOCKED; ++/* Check "normal" sources of NMI. */ ++static int nmi_std (void * dev_id, struct pt_regs * regs, int cpu, int handled) ++{ ++	unsigned char reason; +  +-/* +- * the best way to detect whether a CPU has a 'hard lockup' problem +- * is to check it's local APIC timer IRQ counts. If they are not +- * changing then that CPU has some problem. +- * +- * as these watchdog NMI IRQs are generated on every CPU, we only +- * have to check the current processor. +- * +- * since NMIs dont listen to _any_ locks, we have to be extremely +- * careful not to rely on unsafe variables. The printk might lock +- * up though, so we have to break up any console locks first ... +- * [when there will be more tty-related locks, break them up +- *  here too!] +- */ ++	reason = inb(0x61); ++	if (reason & 0xc0) { ++		if (reason & 0x80) ++			mem_parity_error(reason, regs); ++		if (reason & 0x40) ++			io_check_error(reason, regs); ++		return NOTIFY_OK; ++	} +  +-static unsigned int +-	last_irq_sums [NR_CPUS], +-	alert_counter [NR_CPUS]; +- +-void touch_nmi_watchdog (void) +-{ +-	int i; +- +-	/* +-	 * Just reset the alert counters, (other CPUs might be +-	 * spinning on locks we hold): +-	 */ +-	for (i = 0; i < NR_CPUS; i++) +-		alert_counter[i] = 0; ++	return NOTIFY_DONE; + } +  +-void nmi_watchdog_tick (struct pt_regs * regs) ++static struct nmi_handler nmi_std_handler = ++{ ++	.link     = LIST_HEAD_INIT(nmi_std_handler.link), ++	.dev_name = "nmi_std", ++	.dev_id   = NULL, ++	.handler  = nmi_std, ++	.priority = 128, /* mid-level priority. */ ++}; ++ ++asmlinkage void do_nmi(struct pt_regs * regs, long error_code) + { ++	struct list_head   *curr; ++	struct nmi_handler *curr_h; ++	int                val; ++	int                cpu = smp_processor_id(); ++	int                handled = 0; ++  +  +-	/* +-	 * Since current_thread_info()-> is always on the stack, and we +-	 * always switch the stack NMI-atomically, it's safe to use +-	 * smp_processor_id(). +-	 */ +-	int sum, cpu = smp_processor_id(); ++	++nmi_count(cpu); +  +-	sum = irq_stat[cpu].apic_timer_irqs; ++	/* Since NMIs are edge-triggered, we could possibly miss one if we ++	   don't call them all, so we call them all. */ +  +-	if (last_irq_sums[cpu] == sum) { +-		/* +-		 * Ayiee, looks like this CPU is stuck ... +-		 * wait a few IRQs (5 seconds) before doing the oops ... +-		 */ +-		alert_counter[cpu]++; +-		if (alert_counter[cpu] == 5*nmi_hz) { +-			spin_lock(&nmi_print_lock); +-			/* +-			 * We are in trouble anyway, lets at least try +-			 * to get a message out. +-			 */ +-			bust_spinlocks(1); +-			printk("NMI Watchdog detected LOCKUP on CPU%d, eip %08lx, registers:\n", cpu, regs->eip); +-			show_registers(regs); +-			printk("console shuts up ...\n"); +-			console_silent(); +-			spin_unlock(&nmi_print_lock); +-			bust_spinlocks(0); +-			do_exit(SIGSEGV); ++	__list_for_each_rcu(curr, &nmi_handler_list) { ++		curr_h = list_entry(curr, struct nmi_handler, link); ++		val = curr_h->handler(curr_h->dev_id, regs, cpu, handled); ++		switch (val & ~NOTIFY_STOP_MASK) { ++		case NOTIFY_OK: ++			handled = 1; ++			break; ++			 ++		case NOTIFY_DONE: ++		default:; + 		} +-	} else { +-		last_irq_sums[cpu] = sum; +-		alert_counter[cpu] = 0; ++		if (val & NOTIFY_STOP_MASK) ++			break; + 	} +-	if (nmi_perfctr_msr) { +-		if (nmi_perfctr_msr == MSR_P4_IQ_COUNTER0) { +-			/* +-			 * P4 quirks: +-			 * - An overflown perfctr will assert its interrupt +-			 *   until the OVF flag in its CCCR is cleared. +-			 * - LVTPC is masked on interrupt and must be +-			 *   unmasked by the LVTPC handler. +-			 */ +-			wrmsr(MSR_P4_IQ_CCCR0, P4_NMI_IQ_CCCR0, 0); +-			apic_write(APIC_LVTPC, APIC_DM_NMI); +-		} +-		wrmsr(nmi_perfctr_msr, -(cpu_khz/nmi_hz*1000), -1); ++ ++	if (!handled) ++		unknown_nmi_error(regs, cpu); ++	else { ++		/* ++		 * Reassert NMI in case it became active meanwhile ++		 * as it's edge-triggered.    Don't do this if the NMI ++		 * wasn't handled to avoid an infinite NMI loop. ++		 * ++		 * This is necessary in case we have another external ++		 * NMI while processing this one.  The external NMIs ++		 * are level-generated, into the processor NMIs are ++		 * edge-triggered, so if you have one NMI source ++		 * come in while another is already there, the level ++		 * will never go down to cause another edge, and ++		 * no more NMIs will happen.  This does NOT apply ++		 * to internally generated NMIs, though, so you ++		 * can't use the same trick to only call one handler ++		 * at a time.  Otherwise, if two internal NMIs came ++		 * in at the same time you might miss one. ++		 */ ++		outb(0x8f, 0x70); ++		inb(0x71);		/* dummy */ ++		outb(0x0f, 0x70); ++		inb(0x71);		/* dummy */ + 	} ++} ++ ++void __init init_nmi(void) ++{ ++	request_nmi(&nmi_std_handler); + } +diff -urN linux.orig/arch/i386/kernel/nmi_watchdog.c linux/arch/i386/kernel/nmi_watchdog.c +--- linux.orig/arch/i386/kernel/nmi_watchdog.c	Thu Oct 24 19:56:54 2002 ++++ linux/arch/i386/kernel/nmi_watchdog.c	Thu Oct 24 20:54:19 2002 +@@ -0,0 +1,481 @@ ++/* ++ *  linux/arch/i386/nmi_watchdog.c ++ * ++ *  NMI watchdog support on APIC systems ++ * ++ *  Started by Ingo Molnar <mingo@redhat.com> ++ * ++ *  Fixes: ++ *  Mikael Pettersson	: AMD K7 support for local APIC NMI watchdog. ++ *  Mikael Pettersson	: Power Management for local APIC NMI watchdog. ++ *  Mikael Pettersson	: Pentium 4 support for local APIC NMI watchdog. ++ */ ++ ++#include <linux/config.h> ++#include <linux/mm.h> ++#include <linux/irq.h> ++#include <linux/delay.h> ++#include <linux/bootmem.h> ++#include <linux/smp_lock.h> ++#include <linux/interrupt.h> ++#include <linux/mc146818rtc.h> ++#include <linux/kernel_stat.h> ++#include <linux/notifier.h> ++ ++#include <asm/smp.h> ++#include <asm/mtrr.h> ++#include <asm/mpspec.h> ++#include <asm/nmi.h> ++ ++unsigned int nmi_watchdog = NMI_NONE; ++static unsigned int nmi_hz = HZ; ++ ++/* This is for I/O APIC, until we can figure out how to tell if it's from the ++   I/O APIC.  If the NMI  was not handled before now, we handle it. */ ++static int dummy_watchdog_reset(int handled) ++{ ++	return !handled; ++} ++ ++/*  ++ * Returns 1 if it is a source of the NMI, and resets the NMI to go ++ * off again. ++ */ ++static int (*watchdog_reset)(int handled) = dummy_watchdog_reset; ++ ++extern void show_registers(struct pt_regs *regs); ++ ++#define K7_EVNTSEL_ENABLE	(1 << 22) ++#define K7_EVNTSEL_INT		(1 << 20) ++#define K7_EVNTSEL_OS		(1 << 17) ++#define K7_EVNTSEL_USR		(1 << 16) ++#define K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING	0x76 ++#define K7_NMI_EVENT		K7_EVENT_CYCLES_PROCESSOR_IS_RUNNING ++ ++#define P6_EVNTSEL0_ENABLE	(1 << 22) ++#define P6_EVNTSEL_INT		(1 << 20) ++#define P6_EVNTSEL_OS		(1 << 17) ++#define P6_EVNTSEL_USR		(1 << 16) ++#define P6_EVENT_CPU_CLOCKS_NOT_HALTED	0x79 ++#define P6_NMI_EVENT		P6_EVENT_CPU_CLOCKS_NOT_HALTED ++ ++#define MSR_P4_MISC_ENABLE	0x1A0 ++#define MSR_P4_MISC_ENABLE_PERF_AVAIL	(1<<7) ++#define MSR_P4_MISC_ENABLE_PEBS_UNAVAIL	(1<<12) ++#define MSR_P4_PERFCTR0		0x300 ++#define MSR_P4_CCCR0		0x360 ++#define P4_ESCR_EVENT_SELECT(N)	((N)<<25) ++#define P4_ESCR_OS		(1<<3) ++#define P4_ESCR_USR		(1<<2) ++#define P4_CCCR_OVF_PMI		(1<<26) ++#define P4_CCCR_THRESHOLD(N)	((N)<<20) ++#define P4_CCCR_COMPLEMENT	(1<<19) ++#define P4_CCCR_COMPARE		(1<<18) ++#define P4_CCCR_REQUIRED	(3<<16) ++#define P4_CCCR_ESCR_SELECT(N)	((N)<<13) ++#define P4_CCCR_ENABLE		(1<<12) ++/* Set up IQ_COUNTER0 to behave like a clock, by having IQ_CCCR0 filter ++   CRU_ESCR0 (with any non-null event selector) through a complemented ++   max threshold. [IA32-Vol3, Section 14.9.9] */ ++#define MSR_P4_IQ_COUNTER0	0x30C ++#define MSR_P4_IQ_CCCR0		0x36C ++#define MSR_P4_CRU_ESCR0	0x3B8 ++#define P4_NMI_CRU_ESCR0	(P4_ESCR_EVENT_SELECT(0x3F)|P4_ESCR_OS|P4_ESCR_USR) ++#define P4_NMI_IQ_CCCR0	\ ++	(P4_CCCR_OVF_PMI|P4_CCCR_THRESHOLD(15)|P4_CCCR_COMPLEMENT|	\ ++	 P4_CCCR_COMPARE|P4_CCCR_REQUIRED|P4_CCCR_ESCR_SELECT(4)|P4_CCCR_ENABLE) ++ ++int __init check_nmi_watchdog (void) ++{ ++	unsigned int prev_nmi_count[NR_CPUS]; ++	int cpu; ++ ++	printk(KERN_INFO "testing NMI watchdog ... "); ++ ++	for (cpu = 0; cpu < NR_CPUS; cpu++) ++		prev_nmi_count[cpu] = irq_stat[cpu].__nmi_count; ++	local_irq_enable(); ++	mdelay((10*1000)/nmi_hz); // wait 10 ticks ++ ++	/* FIXME: Only boot CPU is online at this stage.  Check CPUs ++           as they come up. */ ++	for (cpu = 0; cpu < NR_CPUS; cpu++) { ++		if (!cpu_online(cpu)) ++			continue; ++		if (nmi_count(cpu) - prev_nmi_count[cpu] <= 5) { ++			printk("CPU#%d: NMI appears to be stuck!\n", cpu); ++			return -1; ++		} ++	} ++	printk("OK.\n"); ++ ++	/* now that we know it works we can reduce NMI frequency to ++	   something more reasonable; makes a difference in some configs */ ++	if (nmi_watchdog == NMI_LOCAL_APIC) ++		nmi_hz = 1; ++ ++	return 0; ++} ++ ++static int nmi_watchdog_tick (void * dev_id, struct pt_regs * regs, int cpu, ++	int handled); ++ ++static struct nmi_handler nmi_watchdog_handler = ++{ ++	.link     = LIST_HEAD_INIT(nmi_watchdog_handler.link), ++	.dev_name = "nmi_watchdog", ++	.dev_id   = NULL, ++	.handler  = nmi_watchdog_tick, ++	.priority = 255, /* We want to be relatively high priority. */ ++}; ++ ++static int __init setup_nmi_watchdog(char *str) ++{ ++	int nmi; ++ ++	get_option(&str, &nmi); ++ ++	if (nmi >= NMI_INVALID) ++		return 0; ++ ++	if (nmi == NMI_NONE) ++		nmi_watchdog = nmi; ++	/* ++	 * If any other x86 CPU has a local APIC, then ++	 * please test the NMI stuff there and send me the ++	 * missing bits. Right now Intel P6/P4 and AMD K7 only. ++	 */ ++	if ((nmi == NMI_LOCAL_APIC) && ++			(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && ++			(boot_cpu_data.x86 == 6 || boot_cpu_data.x86 == 15)) ++		nmi_watchdog = nmi; ++	if ((nmi == NMI_LOCAL_APIC) && ++			(boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && ++			(boot_cpu_data.x86 == 6)) ++		nmi_watchdog = nmi; ++	/* ++	 * We can enable the IO-APIC watchdog ++	 * unconditionally. ++	 */ ++	if (nmi == NMI_IO_APIC) ++		nmi_watchdog = nmi; ++ ++	if (nmi_watchdog != NMI_NONE) { ++		if (request_nmi(&nmi_watchdog_handler) != 0) { ++			/* Couldn't add a watchdog handler, give up. */ ++			printk(KERN_WARNING ++			       "nmi_watchdog: Couldn't request nmi\n"); ++			nmi_watchdog = NMI_NONE; ++			return 0; ++		} ++	} ++ ++	return 1; ++} ++ ++__setup("nmi_watchdog=", setup_nmi_watchdog); ++ ++#ifdef CONFIG_PM ++ ++#include <linux/pm.h> ++ ++struct pm_dev *nmi_pmdev; ++ ++static void disable_apic_nmi_watchdog(void) ++{ ++	switch (boot_cpu_data.x86_vendor) { ++	case X86_VENDOR_AMD: ++		wrmsr(MSR_K7_EVNTSEL0, 0, 0); ++		break; ++	case X86_VENDOR_INTEL: ++		switch (boot_cpu_data.x86) { ++		case 6: ++			wrmsr(MSR_P6_EVNTSEL0, 0, 0); ++			break; ++		case 15: ++			wrmsr(MSR_P4_IQ_CCCR0, 0, 0); ++			wrmsr(MSR_P4_CRU_ESCR0, 0, 0); ++			break; ++		} ++		break; ++	} ++} ++ ++static int nmi_pm_callback(struct pm_dev *dev, pm_request_t rqst, void *data) ++{ ++	switch (rqst) { ++	case PM_SUSPEND: ++		disable_apic_nmi_watchdog(); ++		break; ++	case PM_RESUME: ++		setup_apic_nmi_watchdog(); ++		break; ++	} ++	return 0; ++} ++ ++struct pm_dev * set_nmi_pm_callback(pm_callback callback) ++{ ++	apic_pm_unregister(nmi_pmdev); ++	return apic_pm_register(PM_SYS_DEV, 0, callback); ++} ++ ++void unset_nmi_pm_callback(struct pm_dev * dev) ++{ ++	apic_pm_unregister(dev); ++	nmi_pmdev = apic_pm_register(PM_SYS_DEV, 0, nmi_pm_callback); ++} ++  ++static void nmi_pm_init(void) ++{ ++	if (!nmi_pmdev) ++		nmi_pmdev = apic_pm_register(PM_SYS_DEV, 0, nmi_pm_callback); ++} ++ ++#define __pminit	/*empty*/ ++ ++#else	/* CONFIG_PM */ ++ ++static inline void nmi_pm_init(void) { } ++ ++#define __pminit	__init ++ ++#endif	/* CONFIG_PM */ ++ ++/* ++ * Activate the NMI watchdog via the local APIC. ++ * Original code written by Keith Owens. ++ */ ++ ++static void __pminit clear_msr_range(unsigned int base, unsigned int n) ++{ ++	unsigned int i; ++ ++	for(i = 0; i < n; ++i) ++		wrmsr(base+i, 0, 0); ++} ++ ++static int k7_watchdog_reset(int handled) ++{ ++	unsigned int low, high; ++	int          source; ++ ++	rdmsr(MSR_K7_PERFCTR0, low, high); ++	source = (low & (1 << 31)) == 0; ++	if (source) ++		wrmsr(MSR_K7_PERFCTR0, -(cpu_khz/nmi_hz*1000), -1); ++	return source; ++} ++ ++static void __pminit setup_k7_watchdog(void) ++{ ++	unsigned int evntsel; ++ ++	watchdog_reset = k7_watchdog_reset; ++ ++	clear_msr_range(MSR_K7_EVNTSEL0, 4); ++	clear_msr_range(MSR_K7_PERFCTR0, 4); ++ ++	evntsel = K7_EVNTSEL_INT ++		| K7_EVNTSEL_OS ++		| K7_EVNTSEL_USR ++		| K7_NMI_EVENT; ++ ++	wrmsr(MSR_K7_EVNTSEL0, evntsel, 0); ++	Dprintk("setting K7_PERFCTR0 to %08lx\n", -(cpu_khz/nmi_hz*1000)); ++	wrmsr(MSR_K7_PERFCTR0, -(cpu_khz/nmi_hz*1000), -1); ++	apic_write(APIC_LVTPC, APIC_DM_NMI); ++	evntsel |= K7_EVNTSEL_ENABLE; ++	wrmsr(MSR_K7_EVNTSEL0, evntsel, 0); ++} ++ ++static int p6_watchdog_reset(int handled) ++{ ++	unsigned int low, high; ++	int          source; ++ ++	rdmsr(MSR_P6_PERFCTR0, low, high); ++	source = (low & (1 << 31)) == 0; ++	if (source) ++		wrmsr(MSR_P6_PERFCTR0, -(cpu_khz/nmi_hz*1000), -1); ++	return source; ++} ++ ++static void __pminit setup_p6_watchdog(void) ++{ ++	unsigned int evntsel; ++ ++	watchdog_reset = p6_watchdog_reset; ++ ++	clear_msr_range(MSR_P6_EVNTSEL0, 2); ++	clear_msr_range(MSR_P6_PERFCTR0, 2); ++ ++	evntsel = P6_EVNTSEL_INT ++		| P6_EVNTSEL_OS ++		| P6_EVNTSEL_USR ++		| P6_NMI_EVENT; ++ ++	wrmsr(MSR_P6_EVNTSEL0, evntsel, 0); ++	Dprintk("setting P6_PERFCTR0 to %08lx\n", -(cpu_khz/nmi_hz*1000)); ++	wrmsr(MSR_P6_PERFCTR0, -(cpu_khz/nmi_hz*1000), 0); ++	apic_write(APIC_LVTPC, APIC_DM_NMI); ++	evntsel |= P6_EVNTSEL0_ENABLE; ++	wrmsr(MSR_P6_EVNTSEL0, evntsel, 0); ++} ++ ++static int p4_watchdog_reset(int handled) ++{ ++	unsigned int low, high; ++	int          source; ++ ++	rdmsr(MSR_P4_IQ_COUNTER0, low, high); ++	source = (low & (1 << 31)) == 0; ++	if (source) { ++		/* ++		 * P4 quirks: ++		 * - An overflown perfctr will assert its interrupt ++		 *   until the OVF flag in its CCCR is cleared. ++		 * - LVTPC is masked on interrupt and must be ++		 *   unmasked by the LVTPC handler. ++		 */ ++		wrmsr(MSR_P4_IQ_CCCR0, P4_NMI_IQ_CCCR0, 0); ++		apic_write(APIC_LVTPC, APIC_DM_NMI); ++ ++		wrmsr(MSR_P4_IQ_COUNTER0, -(cpu_khz/nmi_hz*1000), -1); ++	} ++	return source; ++} ++ ++static int __pminit setup_p4_watchdog(void) ++{ ++	unsigned int misc_enable, dummy; ++ ++	rdmsr(MSR_P4_MISC_ENABLE, misc_enable, dummy); ++	if (!(misc_enable & MSR_P4_MISC_ENABLE_PERF_AVAIL)) ++		return 0; ++ ++	watchdog_reset = p4_watchdog_reset; ++ ++	if (!(misc_enable & MSR_P4_MISC_ENABLE_PEBS_UNAVAIL)) ++		clear_msr_range(0x3F1, 2); ++	/* MSR 0x3F0 seems to have a default value of 0xFC00, but current ++	   docs doesn't fully define it, so leave it alone for now. */ ++	clear_msr_range(0x3A0, 31); ++	clear_msr_range(0x3C0, 6); ++	clear_msr_range(0x3C8, 6); ++	clear_msr_range(0x3E0, 2); ++	clear_msr_range(MSR_P4_CCCR0, 18); ++	clear_msr_range(MSR_P4_PERFCTR0, 18); ++ ++	wrmsr(MSR_P4_CRU_ESCR0, P4_NMI_CRU_ESCR0, 0); ++	wrmsr(MSR_P4_IQ_CCCR0, P4_NMI_IQ_CCCR0 & ~P4_CCCR_ENABLE, 0); ++	Dprintk("setting P4_IQ_COUNTER0 to 0x%08lx\n", -(cpu_khz/nmi_hz*1000)); ++	wrmsr(MSR_P4_IQ_COUNTER0, -(cpu_khz/nmi_hz*1000), -1); ++	apic_write(APIC_LVTPC, APIC_DM_NMI); ++	wrmsr(MSR_P4_IQ_CCCR0, P4_NMI_IQ_CCCR0, 0); ++	return 1; ++} ++ ++void __pminit setup_apic_nmi_watchdog (void) ++{ ++	switch (boot_cpu_data.x86_vendor) { ++	case X86_VENDOR_AMD: ++		if (boot_cpu_data.x86 != 6) ++			return; ++		setup_k7_watchdog(); ++		break; ++	case X86_VENDOR_INTEL: ++		switch (boot_cpu_data.x86) { ++		case 6: ++			setup_p6_watchdog(); ++			break; ++		case 15: ++			if (!setup_p4_watchdog()) ++				return; ++			break; ++		default: ++			return; ++		} ++		break; ++	default: ++		return; ++	} ++	nmi_pm_init(); ++} ++ ++static spinlock_t nmi_print_lock = SPIN_LOCK_UNLOCKED; ++ ++/* ++ * the best way to detect whether a CPU has a 'hard lockup' problem ++ * is to check it's local APIC timer IRQ counts. If they are not ++ * changing then that CPU has some problem. ++ * ++ * as these watchdog NMI IRQs are generated on every CPU, we only ++ * have to check the current processor. ++ * ++ * since NMIs dont listen to _any_ locks, we have to be extremely ++ * careful not to rely on unsafe variables. The printk might lock ++ * up though, so we have to break up any console locks first ... ++ * [when there will be more tty-related locks, break them up ++ *  here too!] ++ */ ++ ++static unsigned int ++	last_irq_sums [NR_CPUS], ++	alert_counter [NR_CPUS]; ++ ++void touch_nmi_watchdog (void) ++{ ++	int i; ++ ++	/* ++	 * Just reset the alert counters, (other CPUs might be ++	 * spinning on locks we hold): ++	 */ ++	for (i = 0; i < NR_CPUS; i++) ++		alert_counter[i] = 0; ++} ++ ++static int nmi_watchdog_tick (void * dev_id, struct pt_regs * regs, int cpu, ++	int handled) ++{ ++	/* ++	 * Since current_thread_info()-> is always on the stack, and we ++	 * always switch the stack NMI-atomically, it's safe to use ++	 * smp_processor_id(). ++	 */ ++	int sum; ++ ++	if (! watchdog_reset(handled)) ++		return NOTIFY_DONE; /* We are not an NMI source. */ ++ ++	sum = irq_stat[cpu].apic_timer_irqs; ++ ++	if (last_irq_sums[cpu] == sum) { ++		/* ++		 * Ayiee, looks like this CPU is stuck ... ++		 * wait a few IRQs (5 seconds) before doing the oops ... ++		 */ ++		alert_counter[cpu]++; ++		if (alert_counter[cpu] == 5*nmi_hz) { ++			spin_lock(&nmi_print_lock); ++			/* ++			 * We are in trouble anyway, lets at least try ++			 * to get a message out. ++			 */ ++			bust_spinlocks(1); ++			printk("NMI Watchdog detected LOCKUP on CPU%d, eip %08lx, registers:\n", cpu, regs->eip); ++			show_registers(regs); ++			printk("console shuts up ...\n"); ++			console_silent(); ++			spin_unlock(&nmi_print_lock); ++			bust_spinlocks(0); ++			do_exit(SIGSEGV); ++		} ++	} else { ++		last_irq_sums[cpu] = sum; ++		alert_counter[cpu] = 0; ++	} ++ ++	return NOTIFY_OK; ++} +diff -urN linux.orig/arch/i386/kernel/traps.c linux/arch/i386/kernel/traps.c +--- linux.orig/arch/i386/kernel/traps.c	Mon Oct 21 13:25:45 2002 ++++ linux/arch/i386/kernel/traps.c	Thu Oct 24 19:54:16 2002 +@@ -40,7 +40,6 @@ + #include <asm/debugreg.h> + #include <asm/desc.h> + #include <asm/i387.h> +-#include <asm/nmi.h> +  + #include <asm/smp.h> + #include <asm/pgalloc.h> +@@ -52,6 +51,7 @@ + asmlinkage int system_call(void); + asmlinkage void lcall7(void); + asmlinkage void lcall27(void); ++void init_nmi(void); +  + struct desc_struct default_ldt[] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, + 		{ 0, 0 }, { 0, 0 } }; +@@ -443,107 +443,6 @@ + 	} + } +  +-static void mem_parity_error(unsigned char reason, struct pt_regs * regs) +-{ +-	printk("Uhhuh. NMI received. Dazed and confused, but trying to continue\n"); +-	printk("You probably have a hardware problem with your RAM chips\n"); +- +-	/* Clear and disable the memory parity error line. */ +-	reason = (reason & 0xf) | 4; +-	outb(reason, 0x61); +-} +- +-static void io_check_error(unsigned char reason, struct pt_regs * regs) +-{ +-	unsigned long i; +- +-	printk("NMI: IOCK error (debug interrupt?)\n"); +-	show_registers(regs); +- +-	/* Re-enable the IOCK line, wait for a few seconds */ +-	reason = (reason & 0xf) | 8; +-	outb(reason, 0x61); +-	i = 2000; +-	while (--i) udelay(1000); +-	reason &= ~8; +-	outb(reason, 0x61); +-} +- +-static void unknown_nmi_error(unsigned char reason, struct pt_regs * regs) +-{ +-#ifdef CONFIG_MCA +-	/* Might actually be able to figure out what the guilty party +-	* is. */ +-	if( MCA_bus ) { +-		mca_handle_nmi(); +-		return; +-	} +-#endif +-	printk("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", +-		reason, smp_processor_id()); +-	printk("Dazed and confused, but trying to continue\n"); +-	printk("Do you have a strange power saving mode enabled?\n"); +-} +- +-static void default_do_nmi(struct pt_regs * regs) +-{ +-	unsigned char reason = inb(0x61); +-  +-	if (!(reason & 0xc0)) { +-#if CONFIG_X86_LOCAL_APIC +-		/* +-		 * Ok, so this is none of the documented NMI sources, +-		 * so it must be the NMI watchdog. +-		 */ +-		if (nmi_watchdog) { +-			nmi_watchdog_tick(regs); +-			return; +-		} +-#endif +-		unknown_nmi_error(reason, regs); +-		return; +-	} +-	if (reason & 0x80) +-		mem_parity_error(reason, regs); +-	if (reason & 0x40) +-		io_check_error(reason, regs); +-	/* +-	 * Reassert NMI in case it became active meanwhile +-	 * as it's edge-triggered. +-	 */ +-	outb(0x8f, 0x70); +-	inb(0x71);		/* dummy */ +-	outb(0x0f, 0x70); +-	inb(0x71);		/* dummy */ +-} +- +-static int dummy_nmi_callback(struct pt_regs * regs, int cpu) +-{ +-	return 0; +-} +-  +-static nmi_callback_t nmi_callback = dummy_nmi_callback; +-  +-asmlinkage void do_nmi(struct pt_regs * regs, long error_code) +-{ +-	int cpu = smp_processor_id(); +- +-	++nmi_count(cpu); +- +-	if (!nmi_callback(regs, cpu)) +-		default_do_nmi(regs); +-} +- +-void set_nmi_callback(nmi_callback_t callback) +-{ +-	nmi_callback = callback; +-} +- +-void unset_nmi_callback(void) +-{ +-	nmi_callback = dummy_nmi_callback; +-} +- + /* +  * Our handling of the processor debug registers is non-trivial. +  * We do not clear them on entry and exit from the kernel. Therefore +@@ -924,4 +823,6 @@ + 	cpu_init(); +  + 	trap_init_hook(); ++ ++	init_nmi(); + } +diff -urN linux.orig/arch/i386/oprofile/nmi_int.c linux/arch/i386/oprofile/nmi_int.c +--- linux.orig/arch/i386/oprofile/nmi_int.c	Mon Oct 21 13:25:45 2002 ++++ linux/arch/i386/oprofile/nmi_int.c	Thu Oct 24 16:03:31 2002 +@@ -54,12 +54,24 @@ +   +   + // FIXME: kernel_only +-static int nmi_callback(struct pt_regs * regs, int cpu) ++static int nmi_callback(void *dev_id, struct pt_regs *regs, int cpu, int handled) + { +-	return (model->check_ctrs(cpu, &cpu_msrs[cpu], regs)); ++	if (model->check_ctrs(cpu, &cpu_msrs[cpu], regs)) ++		return NOTIFY_OK; ++ ++	return NOTIFY_DONE; + } +   +-  ++static struct nmi_handler nmi_handler = ++{ ++	.link     = LIST_HEAD_INIT(nmi_handler.link), ++	.dev_name = "oprofile", ++	.dev_id   = NULL, ++	.handler  = nmi_callback, ++	.priority = 1023, /* Very high priority. */ ++}; ++ ++ + static void nmi_save_registers(struct op_msrs * msrs) + { + 	unsigned int const nr_ctrs = model->num_counters; +@@ -96,8 +108,12 @@ + } +   +  ++static void nmi_cpu_shutdown(void * dummy); ++ + static int nmi_setup(void) + { ++	int rv; ++ + 	/* We walk a thin line between law and rape here. + 	 * We need to be careful to install our NMI handler + 	 * without actually triggering any NMIs as this will +@@ -105,7 +121,13 @@ + 	 */ + 	smp_call_function(nmi_cpu_setup, NULL, 0, 1); + 	nmi_cpu_setup(0); +-	set_nmi_callback(nmi_callback); ++	rv = request_nmi(&nmi_handler); ++	if (rv) { ++		smp_call_function(nmi_cpu_shutdown, NULL, 0, 1); ++		nmi_cpu_shutdown(0); ++		return rv; ++	} ++ + 	oprofile_pmdev = set_nmi_pm_callback(oprofile_pm_callback); + 	return 0; + } +@@ -145,7 +167,7 @@ + static void nmi_shutdown(void) + { + 	unset_nmi_pm_callback(oprofile_pmdev); +-	unset_nmi_callback(); ++	release_nmi(&nmi_handler); + 	smp_call_function(nmi_cpu_shutdown, NULL, 0, 1); + 	nmi_cpu_shutdown(0); + } +diff -urN linux.orig/drivers/char/Config.help linux/drivers/char/Config.help +--- linux.orig/drivers/char/Config.help	Mon Oct 21 13:26:00 2002 ++++ linux/drivers/char/Config.help	Wed Oct 30 10:09:07 2002 +@@ -946,6 +946,26 @@ +  +   If compiled as a module, it will be called scx200_gpio.o. +  ++CONFIG_IPMI_HANDLER ++  This enables the central IMPI message handler, required for IPMI ++  to work.  Note that you must have this enabled to do any other IPMI ++  things.  See IPMI.txt for more details. ++ ++CONFIG_IPMI_PANIC_EVENT ++  When a panic occurs, this will cause the IPMI message handler to ++  generate an IPMI event describing the panic to each interface ++  registered with the message handler. ++ ++CONFIG_IPMI_DEVICE_INTERFACE ++  This provides an IOCTL interface to the IPMI message handler so ++  userland processes may use IPMI.  It supports poll() and select(). ++ ++CONFIG_IPMI_KCS ++  Provides a driver for a KCS-style interface to a BMC. ++ ++CONFIG_IPMI_WATCHDOG ++  This enables the IPMI watchdog timer. ++ + Texas Instruments parallel link cable support + CONFIG_TIPAR +   If you own a Texas Instruments graphing calculator and use a +@@ -966,4 +986,4 @@ +   Instruments graphing calculator is, then you probably don't need this +   driver. +  +-  If unsure, say N. +\ No newline at end of file ++  If unsure, say N. +diff -urN linux.orig/drivers/char/Config.in linux/drivers/char/Config.in +--- linux.orig/drivers/char/Config.in	Mon Oct 21 13:25:47 2002 ++++ linux/drivers/char/Config.in	Wed Oct 30 10:07:53 2002 +@@ -105,6 +105,12 @@ +    fi + fi +  ++tristate 'IPMI top-level message handler' CONFIG_IPMI_HANDLER ++dep_mbool '  Generate a panic event to all BMCs on a panic' CONFIG_IPMI_PANIC_EVENT $CONFIG_IPMI_HANDLER ++dep_tristate '  Device interface for IPMI' CONFIG_IPMI_DEVICE_INTERFACE $CONFIG_IPMI_HANDLER ++dep_tristate '  IPMI KCS handler' CONFIG_IPMI_KCS $CONFIG_IPMI_HANDLER ++dep_tristate '  IPMI Watchdog Timer' CONFIG_IPMI_WATCHDOG $CONFIG_IPMI_HANDLER ++ + mainmenu_option next_comment + comment 'Watchdog Cards' + bool 'Watchdog Timer Support'	CONFIG_WATCHDOG +diff -urN linux.orig/drivers/char/Makefile linux/drivers/char/Makefile +--- linux.orig/drivers/char/Makefile	Mon Oct 21 13:26:00 2002 ++++ linux/drivers/char/Makefile	Mon Oct 21 13:27:57 2002 +@@ -103,6 +103,7 @@ + obj-$(CONFIG_AGP) += agp/ + obj-$(CONFIG_DRM) += drm/ + obj-$(CONFIG_PCMCIA) += pcmcia/ ++obj-$(CONFIG_IPMI_HANDLER) += ipmi/ +  + # Files generated that shall be removed upon make clean + clean-files := consolemap_deftbl.c defkeymap.c qtronixmap.c +diff -urN linux.orig/drivers/char/ipmi/Makefile linux/drivers/char/ipmi/Makefile +--- linux.orig/drivers/char/ipmi/Makefile	Wed Dec 31 18:00:00 1969 ++++ linux/drivers/char/ipmi/Makefile	Sun Oct 13 16:46:24 2002 +@@ -0,0 +1,17 @@ ++# ++# Makefile for the ipmi drivers. ++# ++ ++export-objs	:= ipmi_msghandler.o ipmi_watchdog.o ++ ++ipmi_kcs_drv-objs := ipmi_kcs_sm.o ipmi_kcs_intf.o ++ ++obj-$(CONFIG_IPMI_HANDLER) += ipmi_msghandler.o ++obj-$(CONFIG_IPMI_DEVICE_INTERFACE) += ipmi_devintf.o ++obj-$(CONFIG_IPMI_KCS) += ipmi_kcs_drv.o ++obj-$(CONFIG_IPMI_WATCHDOG) += ipmi_watchdog.o ++ ++include $(TOPDIR)/Rules.make ++ ++ipmi_kcs_drv.o:	$(ipmi_kcs_drv-objs) ++	$(LD) -r -o $@ $(ipmi_kcs_drv-objs)  +diff -urN linux.orig/drivers/char/ipmi/ipmi_devintf.c linux/drivers/char/ipmi/ipmi_devintf.c +--- linux.orig/drivers/char/ipmi/ipmi_devintf.c	Wed Dec 31 18:00:00 1969 ++++ linux/drivers/char/ipmi/ipmi_devintf.c	Wed Oct 30 13:51:55 2002 +@@ -0,0 +1,539 @@ ++/* ++ * ipmi_devintf.c ++ * ++ * Linux device interface for the IPMI message handler. ++ * ++ * Author: MontaVista Software, Inc. ++ *         Corey Minyard <minyard@mvista.com> ++ *         source@mvista.com ++ * ++ * Copyright 2002 MontaVista Software Inc. ++ * ++ *  This program is free software; you can redistribute it and/or modify it ++ *  under the terms of the GNU General Public License as published by the ++ *  Free Software Foundation; either version 2 of the License, or (at your ++ *  option) any later version. ++ * ++ * ++ *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED ++ *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ++ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ++ *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS ++ *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ++ *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR ++ *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ++ *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ *  You should have received a copy of the GNU General Public License along ++ *  with this program; if not, write to the Free Software Foundation, Inc., ++ *  675 Mass Ave, Cambridge, MA 02139, USA. ++ */ ++ ++#include <linux/config.h> ++#include <linux/module.h> ++#include <linux/errno.h> ++#include <asm/system.h> ++#include <linux/sched.h> ++#include <linux/poll.h> ++#include <linux/spinlock.h> ++#include <linux/slab.h> ++#include <linux/devfs_fs_kernel.h> ++#include <linux/ipmi.h> ++#include <asm/semaphore.h> ++#include <linux/init.h> ++ ++struct ipmi_file_private ++{ ++	ipmi_user_t          user; ++	spinlock_t           recv_msg_lock; ++	struct list_head     recv_msgs; ++	struct file          *file; ++	struct fasync_struct *fasync_queue; ++	wait_queue_head_t    wait; ++	struct semaphore     recv_sem; ++}; ++ ++static void file_receive_handler(struct ipmi_recv_msg *msg, ++				 void                 *handler_data) ++{ ++	struct ipmi_file_private *priv = handler_data; ++	int                      was_empty; ++	unsigned long            flags; ++ ++	spin_lock_irqsave(&(priv->recv_msg_lock), flags); ++ ++	was_empty = list_empty(&(priv->recv_msgs)); ++	list_add_tail(&(msg->link), &(priv->recv_msgs)); ++ ++	if (was_empty) { ++		wake_up_interruptible(&priv->wait); ++		kill_fasync(&priv->fasync_queue, SIGIO, POLL_IN); ++	} ++ ++	spin_unlock_irqrestore(&(priv->recv_msg_lock), flags); ++} ++ ++static unsigned int ipmi_poll(struct file *file, poll_table *wait) ++{ ++	struct ipmi_file_private *priv = file->private_data; ++	unsigned int             mask = 0; ++	unsigned long            flags; ++ ++	spin_lock_irqsave(&priv->recv_msg_lock, flags); ++ ++	poll_wait(file, &priv->wait, wait); ++ ++	if (! list_empty(&(priv->recv_msgs))) ++		mask |= (POLLIN | POLLRDNORM); ++ ++	spin_unlock_irqrestore(&priv->recv_msg_lock, flags); ++ ++	return mask; ++} ++ ++static int ipmi_fasync(int fd, struct file *file, int on) ++{ ++	struct ipmi_file_private *priv = file->private_data; ++	int                      result; ++ ++	result = fasync_helper(fd, file, on, &priv->fasync_queue); ++ ++	return (result); ++} ++ ++static struct ipmi_user_hndl ipmi_hndlrs = ++{ ++	ipmi_recv_hndl : file_receive_handler ++}; ++ ++static int ipmi_open(struct inode *inode, struct file *file) ++{ ++	int                      if_num = minor(inode->i_rdev); ++	int                      rv; ++	struct ipmi_file_private *priv; ++ ++ ++	MOD_INC_USE_COUNT; ++ ++	priv = kmalloc(sizeof(*priv), GFP_KERNEL); ++	if (!priv) { ++		MOD_DEC_USE_COUNT; ++		return -ENOMEM; ++	} ++ ++	priv->file = file; ++ ++	rv = ipmi_create_user(if_num, ++			      &ipmi_hndlrs, ++			      priv, ++			      &(priv->user)); ++	if (rv) { ++		kfree(priv); ++		MOD_DEC_USE_COUNT; ++		return rv; ++	} ++ ++	file->private_data = priv; ++ ++	spin_lock_init(&(priv->recv_msg_lock)); ++	INIT_LIST_HEAD(&(priv->recv_msgs)); ++	init_waitqueue_head(&priv->wait); ++	priv->fasync_queue = NULL; ++	sema_init(&(priv->recv_sem), 1); ++ ++	return 0; ++} ++ ++static int ipmi_release(struct inode *inode, struct file *file) ++{ ++	struct ipmi_file_private *priv = file->private_data; ++	int                      rv; ++ ++	rv = ipmi_destroy_user(priv->user); ++	if (rv) ++		return rv; ++ ++	ipmi_fasync (-1, file, 0); ++ ++	/* FIXME - free the messages in the list. */ ++	kfree(priv); ++ ++	MOD_DEC_USE_COUNT; ++ ++	return 0; ++} ++ ++static int ipmi_ioctl(struct inode  *inode, ++		      struct file   *file, ++		      unsigned int  cmd, ++		      unsigned long data) ++{ ++	int                      rv = -EINVAL; ++	struct ipmi_file_private *priv = file->private_data; ++ ++	switch (cmd)  ++	{ ++	case IPMICTL_SEND_COMMAND: ++	{ ++		struct ipmi_req    req; ++		struct ipmi_addr   addr; ++		unsigned char msgdata[IPMI_MAX_MSG_LENGTH]; ++ ++		if (copy_from_user(&req, (void *) data, sizeof(req))) { ++			rv = -EFAULT; ++			break; ++		} ++ ++		if (req.addr_len > sizeof(struct ipmi_addr)) ++		{ ++			rv = -EINVAL; ++			break; ++		} ++ ++		if (copy_from_user(&addr, req.addr, req.addr_len)) { ++			rv = -EFAULT; ++			break; ++		} ++ ++		rv = ipmi_validate_addr(&addr, req.addr_len); ++		if (rv) ++			break; ++ ++		if (req.msg.data != NULL) { ++			if (req.msg.data_len > IPMI_MAX_MSG_LENGTH) { ++				rv = -EMSGSIZE; ++				break; ++			} ++ ++			if (copy_from_user(&msgdata, ++					   req.msg.data, ++					   req.msg.data_len)) ++			{ ++				rv = -EFAULT; ++				break; ++			} ++		} else { ++			req.msg.data_len = 0; ++		} ++ ++		req.msg.data = msgdata; ++ ++		rv = ipmi_request(priv->user, ++				  &addr, ++				  req.msgid, ++				  &(req.msg), ++				  0); ++		break; ++	} ++ ++	case IPMICTL_RECEIVE_MSG: ++	case IPMICTL_RECEIVE_MSG_TRUNC: ++	{ ++		struct ipmi_recv      rsp; ++		int              addr_len; ++		struct list_head *entry; ++		struct ipmi_recv_msg  *msg; ++		unsigned long    flags; ++		 ++ ++		rv = 0; ++		if (copy_from_user(&rsp, (void *) data, sizeof(rsp))) { ++			rv = -EFAULT; ++			break; ++		} ++ ++		/* We claim a semaphore because we don't want two ++                   users getting something from the queue at a time. ++                   Since we have to release the spinlock before we can ++                   copy the data to the user, it's possible another ++                   user will grab something from the queue, too.  Then ++                   the messages might get out of order if something ++                   fails and the message gets put back onto the ++                   queue.  This semaphore prevents that problem. */ ++		down(&(priv->recv_sem)); ++ ++		/* Grab the message off the list. */ ++		spin_lock_irqsave(&(priv->recv_msg_lock), flags); ++		if (list_empty(&(priv->recv_msgs))) { ++			spin_unlock_irqrestore(&(priv->recv_msg_lock), flags); ++			rv = -EAGAIN; ++			goto recv_err; ++		} ++		entry = priv->recv_msgs.next; ++		msg = list_entry(entry, struct ipmi_recv_msg, link); ++		list_del(entry); ++		spin_unlock_irqrestore(&(priv->recv_msg_lock), flags); ++ ++		addr_len = ipmi_addr_length(msg->addr.addr_type); ++		if (rsp.addr_len < addr_len) ++		{ ++			rv = -EINVAL; ++			goto recv_putback_on_err; ++		} ++ ++		if (copy_to_user(rsp.addr, &(msg->addr), addr_len)) { ++			rv = -EFAULT; ++			goto recv_putback_on_err; ++		} ++		rsp.addr_len = addr_len; ++ ++		rsp.recv_type = msg->recv_type; ++		rsp.msgid = msg->msgid; ++		rsp.msg.netfn = msg->msg.netfn; ++		rsp.msg.cmd = msg->msg.cmd; ++ ++		if (msg->msg.data_len > 0) { ++			if (rsp.msg.data_len < msg->msg.data_len) { ++				rv = -EMSGSIZE; ++				if (cmd == IPMICTL_RECEIVE_MSG_TRUNC) { ++					msg->msg.data_len = rsp.msg.data_len; ++				} else { ++					goto recv_putback_on_err; ++				} ++			} ++ ++			if (copy_to_user(rsp.msg.data, ++					 msg->msg.data, ++					 msg->msg.data_len)) ++			{ ++				rv = -EFAULT; ++				goto recv_putback_on_err; ++			} ++			rsp.msg.data_len = msg->msg.data_len; ++		} else { ++			rsp.msg.data_len = 0; ++		} ++ ++		if (copy_to_user((void *) data, &rsp, sizeof(rsp))) { ++			rv = -EFAULT; ++			goto recv_putback_on_err; ++		} ++ ++		up(&(priv->recv_sem)); ++		ipmi_free_recv_msg(msg); ++		break; ++ ++	recv_putback_on_err: ++		/* If we got an error, put the message back onto ++		   the head of the queue. */ ++		spin_lock_irqsave(&(priv->recv_msg_lock), flags); ++		list_add(entry, &(priv->recv_msgs)); ++		spin_unlock_irqrestore(&(priv->recv_msg_lock), flags); ++		up(&(priv->recv_sem)); ++		break; ++ ++	recv_err: ++		up(&(priv->recv_sem)); ++		break; ++	} ++ ++	case IPMICTL_REGISTER_FOR_CMD: ++	{ ++		struct ipmi_cmdspec val; ++ ++		if (copy_from_user(&val, (void *) data, sizeof(val))) { ++			rv = -EFAULT; ++			break; ++		} ++ ++		rv = ipmi_register_for_cmd(priv->user, val.netfn, val.cmd); ++		break; ++	} ++ ++	case IPMICTL_UNREGISTER_FOR_CMD: ++	{ ++		struct ipmi_cmdspec   val; ++ ++		if (copy_from_user(&val, (void *) data, sizeof(val))) { ++			rv = -EFAULT; ++			break; ++		} ++ ++		rv = ipmi_unregister_for_cmd(priv->user, val.netfn, val.cmd); ++		break; ++	} ++ ++	case IPMICTL_SET_GETS_EVENTS_CMD: ++	{ ++		int val; ++ ++		if (copy_from_user(&val, (void *) data, sizeof(val))) { ++			rv = -EFAULT; ++			break; ++		} ++ ++		rv = ipmi_set_gets_events(priv->user, val); ++		break; ++	} ++ ++	case IPMICTL_SET_MY_ADDRESS_CMD: ++	{ ++		unsigned int val; ++ ++		if (copy_from_user(&val, (void *) data, sizeof(val))) { ++			rv = -EFAULT; ++			break; ++		} ++ ++		ipmi_set_my_address(priv->user, val); ++		rv = 0; ++		break; ++	} ++ ++	case IPMICTL_GET_MY_ADDRESS_CMD: ++	{ ++		unsigned int val; ++ ++		val = ipmi_get_my_address(priv->user); ++ ++		if (copy_to_user((void *) data, &val, sizeof(val))) { ++			rv = -EFAULT; ++			break; ++		} ++		rv = 0; ++		break; ++	} ++ ++	case IPMICTL_SET_MY_LUN_CMD: ++	{ ++		unsigned int val; ++ ++		if (copy_from_user(&val, (void *) data, sizeof(val))) { ++			rv = -EFAULT; ++			break; ++		} ++ ++		ipmi_set_my_LUN(priv->user, val); ++		rv = 0; ++		break; ++	} ++ ++	case IPMICTL_GET_MY_LUN_CMD: ++	{ ++		unsigned int val; ++ ++		val = ipmi_get_my_LUN(priv->user); ++ ++		if (copy_to_user((void *) data, &val, sizeof(val))) { ++			rv = -EFAULT; ++			break; ++		} ++		rv = 0; ++		break; ++	} ++ ++	} ++   ++	return rv; ++} ++ ++ ++static struct file_operations ipmi_fops = { ++	owner:   THIS_MODULE, ++	ioctl:   ipmi_ioctl, ++	open:    ipmi_open, ++	release: ipmi_release, ++	fasync:  ipmi_fasync, ++	poll:    ipmi_poll ++}; ++ ++#define DEVICE_NAME     "ipmidev" ++ ++static int ipmi_major = 0; ++MODULE_PARM(ipmi_major, "i"); ++ ++static devfs_handle_t devfs_handle; ++ ++#define MAX_DEVICES 10 ++static devfs_handle_t handles[MAX_DEVICES]; ++ ++static void ipmi_new_smi(int if_num) ++{ ++	char name[2]; ++ ++	if (if_num > MAX_DEVICES) ++		return; ++ ++	name[0] = if_num + '0'; ++	name[1] = '\0'; ++ ++	handles[if_num] = devfs_register(devfs_handle, name, DEVFS_FL_NONE, ++					 ipmi_major, if_num, ++					 S_IFCHR | S_IRUSR | S_IWUSR, ++					 &ipmi_fops, NULL); ++} ++ ++static void ipmi_smi_gone(int if_num) ++{ ++	if (if_num > MAX_DEVICES) ++		return; ++ ++	devfs_unregister(handles[if_num]); ++} ++ ++static struct ipmi_smi_watcher smi_watcher = ++{ ++	new_smi  : ipmi_new_smi, ++	smi_gone : ipmi_smi_gone ++}; ++ ++static __init int init_ipmi_devintf(void) ++{ ++	int rv; ++ ++	if (ipmi_major < 0) ++		return -EINVAL; ++ ++	rv = register_chrdev(ipmi_major, DEVICE_NAME, &ipmi_fops); ++	if (rv < 0) { ++		printk(KERN_ERR "ipmi: can't get major %d\n", ipmi_major); ++		return rv; ++	} ++ ++	if (ipmi_major == 0) { ++		ipmi_major = rv; ++	} ++ ++	rv = ipmi_smi_watcher_register(&smi_watcher); ++	if (rv) { ++		unregister_chrdev(ipmi_major, DEVICE_NAME); ++		printk(KERN_WARNING "ipmi: can't register smi watcher"); ++		return rv; ++	} ++ ++	devfs_handle = devfs_mk_dir(NULL, DEVICE_NAME, NULL); ++ ++	printk(KERN_INFO "ipmi: device interface at char major %d\n", ++	       ipmi_major); ++ ++	return 0; ++} ++module_init(init_ipmi_devintf); ++ ++static __exit void cleanup_ipmi(void) ++{ ++	ipmi_smi_watcher_unregister(&smi_watcher); ++	devfs_unregister(devfs_handle); ++	unregister_chrdev(ipmi_major, DEVICE_NAME); ++} ++module_exit(cleanup_ipmi); ++#ifndef MODULE ++static __init int ipmi_setup (char *str) ++{ ++	int x; ++ ++	if (get_option (&str, &x)) { ++		/* ipmi=x sets the major number to x. */ ++		ipmi_major = x; ++	} else if (!strcmp(str, "off")) { ++		ipmi_major = -1; ++	} ++ ++	return 1; ++} ++#endif ++ ++__setup("ipmi=", ipmi_setup); ++MODULE_LICENSE("GPL"); +diff -urN linux.orig/drivers/char/ipmi/ipmi_kcs_intf.c linux/drivers/char/ipmi/ipmi_kcs_intf.c +--- linux.orig/drivers/char/ipmi/ipmi_kcs_intf.c	Wed Dec 31 18:00:00 1969 ++++ linux/drivers/char/ipmi/ipmi_kcs_intf.c	Wed Oct 30 13:51:55 2002 +@@ -0,0 +1,991 @@ ++/* ++ * ipmi_kcs_intf.c ++ * ++ * The interface to the IPMI driver for the KCS. ++ * ++ * Author: MontaVista Software, Inc. ++ *         Corey Minyard <minyard@mvista.com> ++ *         source@mvista.com ++ * ++ * Copyright 2002 MontaVista Software Inc. ++ * ++ *  This program is free software; you can redistribute it and/or modify it ++ *  under the terms of the GNU General Public License as published by the ++ *  Free Software Foundation; either version 2 of the License, or (at your ++ *  option) any later version. ++ * ++ * ++ *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED ++ *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ++ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ++ *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS ++ *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ++ *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR ++ *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ++ *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ *  You should have received a copy of the GNU General Public License along ++ *  with this program; if not, write to the Free Software Foundation, Inc., ++ *  675 Mass Ave, Cambridge, MA 02139, USA. ++ */ ++ ++/* ++ * This file holds the "policy" for the interface to the KCS state ++ * machine.  It does the configuration, handles timers and interrupts, ++ * and drives the real KCS state machine. ++ */ ++ ++#include <linux/config.h> ++#include <linux/module.h> ++#include <asm/system.h> ++#include <linux/sched.h> ++#include <linux/timer.h> ++#include <linux/errno.h> ++#include <linux/spinlock.h> ++#include <linux/slab.h> ++#include <linux/delay.h> ++#include <linux/list.h> ++#include <linux/ioport.h> ++#ifdef CONFIG_HIGH_RES_TIMERS ++#include <linux/hrtime.h> ++#endif ++#include <linux/ipmi_smi.h> ++#include <asm/irq.h> ++#include <asm/io.h> ++#include "ipmi_kcs_sm.h" ++#include <linux/init.h> ++ ++/* Measure times between events in the driver. */ ++#undef DEBUG_TIMING ++ ++#ifdef CONFIG_IPMI_KCS ++/* This forces a dependency to the config file for this option. */ ++#endif ++ ++enum kcs_intf_state { ++	KCS_NORMAL, ++	KCS_GETTING_FLAGS, ++	KCS_GETTING_EVENTS, ++	KCS_CLEARING_FLAGS, ++	KCS_CLEARING_FLAGS_THEN_SET_IRQ, ++	KCS_GETTING_MESSAGES, ++	KCS_ENABLE_INTERRUPTS1, ++	KCS_ENABLE_INTERRUPTS2 ++	/* FIXME - add watchdog stuff. */ ++}; ++ ++struct kcs_info ++{ ++	ipmi_smi_t          intf; ++	struct kcs_data     *kcs_sm; ++	spinlock_t          kcs_lock; ++	struct list_head    xmit_msgs; ++	struct list_head    hp_xmit_msgs; ++	struct ipmi_smi_msg *curr_msg; ++	enum kcs_intf_state kcs_state; ++ ++	/* Flags from the last GET_MSG_FLAGS command, used when an ATTN ++	   is set to hold the flags until we are done handling everything ++	   from the flags. */ ++#define RECEIVE_MSG_AVAIL	0x01 ++#define EVENT_MSG_BUFFER_FULL	0x02 ++#define WDT_PRE_TIMEOUT_INT	0x08 ++	unsigned char       msg_flags; ++ ++	/* If set to true, this will request events the next time the ++	   state machine is idle. */ ++	int                 req_events; ++ ++	/* If true, run the state machine to completion on every send ++	   call.  Generally used after a panic to make sure stuff goes ++	   out. */ ++	int                 run_to_completion; ++ ++	/* The I/O address of the KCS interface. */ ++	int                 addr; ++ ++	/* zero if no irq; */ ++	int                 irq; ++ ++	/* The timer for this kcs. */ ++	struct timer_list   kcs_timer; ++ ++	/* The time (in jiffies) the last timeout occurred at. */ ++	unsigned long       last_timeout_jiffies; ++ ++	/* Used to gracefully stop the timer without race conditions. */ ++	volatile int        stop_operation; ++	volatile int        timer_stopped; ++ ++	/* The driver will disable interrupts when it gets into a ++	   situation where it cannot handle messages due to lack of ++	   memory.  Once that situation clears up, it will re-enable ++	   interupts. */ ++	int                 interrupt_disabled; ++}; ++ ++static void deliver_recv_msg(struct kcs_info *kcs_info, struct ipmi_smi_msg *msg) ++{ ++	/* Deliver the message to the upper layer with the lock ++           released. */ ++	spin_unlock(&(kcs_info->kcs_lock)); ++	ipmi_smi_msg_received(kcs_info->intf, msg); ++	spin_lock(&(kcs_info->kcs_lock)); ++} ++ ++static void return_hosed_msg(struct kcs_info *kcs_info) ++{ ++	struct ipmi_smi_msg *msg = kcs_info->curr_msg; ++ ++	/* Make it a reponse */ ++	msg->rsp[0] = msg->data[0] | 4; ++	msg->rsp[1] = msg->data[1]; ++	msg->rsp[2] = 0xff; /* Unknown error. */ ++	msg->rsp_size = 3; ++			 ++	deliver_recv_msg(kcs_info, msg); ++	kcs_info->curr_msg = NULL; ++} ++ ++static enum kcs_result start_next_msg(struct kcs_info *kcs_info) ++{ ++	int              rv; ++	struct list_head *entry = NULL; ++#ifdef DEBUG_TIMING ++	struct timeval t; ++#endif ++ ++	/* Pick the high priority queue first. */ ++	if (! list_empty(&(kcs_info->hp_xmit_msgs))) { ++		entry = kcs_info->hp_xmit_msgs.next; ++	} else if (! list_empty(&(kcs_info->xmit_msgs))) { ++		entry = kcs_info->xmit_msgs.next; ++	} ++ ++	if (!entry) { ++		kcs_info->curr_msg = NULL; ++		return KCS_SM_IDLE; ++	} else { ++		list_del(entry); ++		kcs_info->curr_msg = list_entry(entry, ++						struct ipmi_smi_msg, ++						link); ++#ifdef DEBUG_TIMING ++		do_gettimeofday(&t); ++		printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec); ++#endif ++		rv = start_kcs_transaction(kcs_info->kcs_sm, ++					   kcs_info->curr_msg->data, ++					   kcs_info->curr_msg->data_size); ++		if (rv) { ++			return_hosed_msg(kcs_info); ++		} ++ ++		return KCS_CALL_WITHOUT_DELAY; ++	} ++} ++ ++static void start_enable_irq(struct kcs_info *kcs_info) ++{ ++	unsigned char msg[2]; ++ ++	/* If we are enabling interrupts, we have to tell the ++	   BMC to use them. */ ++	msg[0] = (IPMI_NETFN_APP_REQUEST << 2); ++	msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD; ++ ++	start_kcs_transaction(kcs_info->kcs_sm, msg, 2); ++	kcs_info->kcs_state = KCS_ENABLE_INTERRUPTS1; ++} ++ ++static void start_clear_flags(struct kcs_info *kcs_info) ++{ ++	unsigned char msg[3]; ++ ++	/* Make sure the watchdog pre-timeout flag is not set at startup. */ ++	msg[0] = (IPMI_NETFN_APP_REQUEST << 2); ++	msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD; ++	msg[2] = WDT_PRE_TIMEOUT_INT; ++ ++	start_kcs_transaction(kcs_info->kcs_sm, msg, 3); ++	kcs_info->kcs_state = KCS_CLEARING_FLAGS; ++} ++ ++/* When we have a situtaion where we run out of memory and cannot ++   allocate messages, we just leave them in the BMC and run the system ++   polled until we can allocate some memory.  Once we have some ++   memory, we will re-enable the interrupt. */ ++static inline void disable_kcs_irq(struct kcs_info *kcs_info) ++{ ++	if ((kcs_info->irq) && (!kcs_info->interrupt_disabled)) { ++		disable_irq_nosync(kcs_info->irq); ++		kcs_info->interrupt_disabled = 1; ++	} ++} ++ ++static inline void enable_kcs_irq(struct kcs_info *kcs_info) ++{ ++	if ((kcs_info->irq) && (kcs_info->interrupt_disabled)) { ++		enable_irq(kcs_info->irq); ++		kcs_info->interrupt_disabled = 0; ++	} ++} ++ ++static void handle_flags(struct kcs_info *kcs_info) ++{ ++	if (kcs_info->msg_flags & WDT_PRE_TIMEOUT_INT) { ++		/* Watchdog pre-timeout */ ++		start_clear_flags(kcs_info); ++		spin_unlock(&(kcs_info->kcs_lock)); ++		ipmi_smi_watchdog_pretimeout(kcs_info->intf); ++		spin_lock(&(kcs_info->kcs_lock)); ++	} else if (kcs_info->msg_flags & RECEIVE_MSG_AVAIL) { ++		/* Messages available. */ ++		kcs_info->curr_msg = ipmi_alloc_smi_msg(); ++		if (!kcs_info->curr_msg) { ++			disable_kcs_irq(kcs_info); ++			kcs_info->kcs_state = KCS_NORMAL; ++			return; ++		} ++		enable_kcs_irq(kcs_info); ++ ++		kcs_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); ++		kcs_info->curr_msg->data[1] = IPMI_GET_MSG_CMD; ++		kcs_info->curr_msg->data_size = 2; ++ ++		start_kcs_transaction(kcs_info->kcs_sm, ++				      kcs_info->curr_msg->data, ++				      kcs_info->curr_msg->data_size); ++		kcs_info->kcs_state = KCS_GETTING_MESSAGES; ++	} else if (kcs_info->msg_flags & EVENT_MSG_BUFFER_FULL) { ++		/* Events available. */ ++		kcs_info->curr_msg = ipmi_alloc_smi_msg(); ++		if (!kcs_info->curr_msg) { ++			disable_kcs_irq(kcs_info); ++			kcs_info->kcs_state = KCS_NORMAL; ++			return; ++		} ++		enable_kcs_irq(kcs_info); ++ ++		kcs_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); ++		kcs_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD; ++		kcs_info->curr_msg->data_size = 2; ++ ++		start_kcs_transaction(kcs_info->kcs_sm, ++				      kcs_info->curr_msg->data, ++				      kcs_info->curr_msg->data_size); ++		kcs_info->kcs_state = KCS_GETTING_EVENTS; ++	} else { ++		kcs_info->kcs_state = KCS_NORMAL; ++	} ++} ++ ++static void handle_transaction_done(struct kcs_info *kcs_info) ++{ ++#ifdef DEBUG_TIMING ++	struct timeval t; ++ ++	do_gettimeofday(&t); ++	printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec); ++#endif ++	switch (kcs_info->kcs_state) { ++	case KCS_NORMAL: ++		kcs_info->curr_msg->rsp_size ++			= kcs_get_result(kcs_info->kcs_sm, ++					 kcs_info->curr_msg->rsp, ++					 IPMI_MAX_MSG_LENGTH); ++		 ++		deliver_recv_msg(kcs_info, kcs_info->curr_msg); ++		kcs_info->curr_msg = NULL; ++		break; ++		 ++	case KCS_GETTING_FLAGS: ++	{ ++		unsigned char msg[4]; ++ ++		/* We got the flags from the KCS, now handle them. */ ++		kcs_get_result(kcs_info->kcs_sm, msg, 4); ++		if (msg[2] != 0) { ++			/* Error fetching flags, just give up for ++			   now. */ ++			kcs_info->kcs_state = KCS_NORMAL; ++		} else { ++			kcs_info->msg_flags = msg[3]; ++			handle_flags(kcs_info); ++		} ++		break; ++	} ++ ++	case KCS_CLEARING_FLAGS: ++	case KCS_CLEARING_FLAGS_THEN_SET_IRQ: ++	{ ++		unsigned char msg[3]; ++ ++		/* We cleared the flags. */ ++		kcs_get_result(kcs_info->kcs_sm, msg, 3); ++		if (msg[2] != 0) { ++			/* Error clearing flags */ ++			printk("ipmi_kcs_intf: Error clearing flags: %2.2x\n", ++			       msg[2]); ++		} ++		if (kcs_info->kcs_state == KCS_CLEARING_FLAGS_THEN_SET_IRQ) ++			start_enable_irq(kcs_info); ++		else ++			kcs_info->kcs_state = KCS_NORMAL; ++		break; ++	} ++ ++	case KCS_GETTING_EVENTS: ++	{ ++		kcs_info->curr_msg->rsp_size ++			= kcs_get_result(kcs_info->kcs_sm, ++					 kcs_info->curr_msg->rsp, ++					 IPMI_MAX_MSG_LENGTH); ++ ++		if (kcs_info->curr_msg->rsp[2] != 0) { ++			/* Error getting event, probably done. */ ++			kcs_info->curr_msg->done(kcs_info->curr_msg); ++ ++			/* Take off the event flag. */ ++			kcs_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL; ++		} else { ++			deliver_recv_msg(kcs_info, kcs_info->curr_msg); ++		} ++		kcs_info->curr_msg = NULL; ++		handle_flags(kcs_info); ++		break; ++	} ++ ++	case KCS_GETTING_MESSAGES: ++	{ ++		kcs_info->curr_msg->rsp_size ++			= kcs_get_result(kcs_info->kcs_sm, ++					 kcs_info->curr_msg->rsp, ++					 IPMI_MAX_MSG_LENGTH); ++ ++		if (kcs_info->curr_msg->rsp[2] != 0) { ++			/* Error getting event, probably done. */ ++			kcs_info->curr_msg->done(kcs_info->curr_msg); ++ ++			/* Take off the msg flag. */ ++			kcs_info->msg_flags &= ~RECEIVE_MSG_AVAIL; ++		} else { ++			deliver_recv_msg(kcs_info, kcs_info->curr_msg); ++		} ++		kcs_info->curr_msg = NULL; ++		handle_flags(kcs_info); ++		break; ++	} ++ ++	case KCS_ENABLE_INTERRUPTS1: ++	{ ++		unsigned char msg[4]; ++ ++		/* We got the flags from the KCS, now handle them. */ ++		kcs_get_result(kcs_info->kcs_sm, msg, 4); ++		if (msg[2] != 0) { ++			printk(KERN_WARNING ++			       "ipmi_kcs: Could not enable interrupts" ++			       ", failed get, using polled mode.\n"); ++			kcs_info->kcs_state = KCS_NORMAL; ++		} else { ++			msg[0] = (IPMI_NETFN_APP_REQUEST << 2); ++			msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD; ++			msg[2] = msg[3] | 1; /* enable msg queue int */ ++			start_kcs_transaction(kcs_info->kcs_sm, msg,3); ++			kcs_info->kcs_state = KCS_ENABLE_INTERRUPTS2; ++		} ++		break; ++	} ++ ++	case KCS_ENABLE_INTERRUPTS2: ++	{ ++		unsigned char msg[4]; ++ ++		/* We got the flags from the KCS, now handle them. */ ++		kcs_get_result(kcs_info->kcs_sm, msg, 4); ++		if (msg[2] != 0) { ++			printk(KERN_WARNING ++			       "ipmi_kcs: Could not enable interrupts" ++			       ", failed set, using polled mode.\n"); ++		} ++		kcs_info->kcs_state = KCS_NORMAL; ++		break; ++	} ++	} ++} ++ ++/* Called on timeouts and events.  Timeouts should pass the elapsed ++   time, interrupts should pass in zero. */ ++static enum kcs_result kcs_event_handler(struct kcs_info *kcs_info, int time) ++{ ++	enum kcs_result kcs_result; ++ ++ restart: ++	/* There used to be a loop here that waited a little while ++	   (around 25us) before giving up.  That turned out to be ++	   pointless, the minimum delays I was seeing were in the 300us ++	   range, which is far too long to wait in an interrupt.  So ++	   we just run until the state machine tells us something ++	   happened or it needs a delay. */ ++	kcs_result = kcs_event(kcs_info->kcs_sm, time); ++	time = 0; ++	while (kcs_result == KCS_CALL_WITHOUT_DELAY) ++	{ ++		kcs_result = kcs_event(kcs_info->kcs_sm, 0); ++	} ++ ++	if (kcs_result == KCS_TRANSACTION_COMPLETE) ++	{ ++		handle_transaction_done(kcs_info); ++		kcs_result = kcs_event(kcs_info->kcs_sm, 0); ++	} ++	else if (kcs_result == KCS_SM_HOSED) ++	{ ++		if (kcs_info->curr_msg != NULL) { ++			/* If we were handling a user message, format ++                           a response to send to the upper layer to ++                           tell it about the error. */ ++			return_hosed_msg(kcs_info); ++		} ++		kcs_result = kcs_event(kcs_info->kcs_sm, 0); ++		kcs_info->kcs_state = KCS_NORMAL; ++	} ++ ++	/* We prefer handling attn over new messages. */ ++	if (kcs_result == KCS_ATTN) ++	{ ++		unsigned char msg[2]; ++ ++		/* Got a attn, send down a get message flags to see ++                   what's causing it.  It would be better to handle ++                   this in the upper layer, but due to the way ++                   interrupts work with the KCS, that's not really ++                   possible. */ ++		msg[0] = (IPMI_NETFN_APP_REQUEST << 2); ++		msg[1] = IPMI_GET_MSG_FLAGS_CMD; ++ ++		start_kcs_transaction(kcs_info->kcs_sm, msg, 2); ++		kcs_info->kcs_state = KCS_GETTING_FLAGS; ++		goto restart; ++	} ++ ++	/* If we are currently idle, try to start the next message. */ ++	if (kcs_result == KCS_SM_IDLE) { ++		kcs_result = start_next_msg(kcs_info); ++		if (kcs_result != KCS_SM_IDLE) ++			goto restart; ++        } ++ ++	if ((kcs_result == KCS_SM_IDLE) && (kcs_info->req_events)) { ++		/* We are idle and the upper layer requested that I fetch ++		   events, so do so. */ ++		unsigned char msg[2]; ++ ++		kcs_info->req_events = 0; ++		msg[0] = (IPMI_NETFN_APP_REQUEST << 2); ++		msg[1] = IPMI_GET_MSG_FLAGS_CMD; ++ ++		start_kcs_transaction(kcs_info->kcs_sm, msg, 2); ++		kcs_info->kcs_state = KCS_GETTING_FLAGS; ++		goto restart; ++	} ++ ++	return kcs_result; ++} ++ ++static void sender(void                *send_info, ++		   struct ipmi_smi_msg *msg, ++		   int                 priority) ++{ ++	struct kcs_info *kcs_info = (struct kcs_info *) send_info; ++	enum kcs_result result; ++	unsigned long   flags; ++#ifdef DEBUG_TIMING ++	struct timeval t; ++#endif ++ ++	spin_lock_irqsave(&(kcs_info->kcs_lock), flags); ++#ifdef DEBUG_TIMING ++	do_gettimeofday(&t); ++	printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec); ++#endif ++ ++	if (kcs_info->run_to_completion) { ++		/* If we are running to completion, then throw it in ++		   the list and run transactions until everything is ++		   clear.  Priority doesn't matter here. */ ++		list_add_tail(&(msg->link), &(kcs_info->xmit_msgs)); ++		result = kcs_event_handler(kcs_info, 0); ++		while (result != KCS_SM_IDLE) { ++			udelay(500); ++			result = kcs_event_handler(kcs_info, 500); ++		} ++	} else if ((kcs_info->kcs_state == KCS_NORMAL) ++		   && (kcs_info->curr_msg == NULL)) ++	{ ++		int rv; ++#ifdef DEBUG_TIMING ++		do_gettimeofday(&t); ++		printk("**Start1: %d.%9.9d\n", t.tv_sec, t.tv_usec); ++#endif ++		kcs_info->curr_msg = msg; ++		rv = start_kcs_transaction(kcs_info->kcs_sm, ++					   kcs_info->curr_msg->data, ++					   kcs_info->curr_msg->data_size); ++		/* If we get an error, put it in the queue to try again ++		   later. */ ++		if (rv) { ++			kcs_info->curr_msg = NULL; ++			goto add_to_list; ++		} ++	} else { ++	add_to_list: ++		if (priority > 0) { ++			list_add_tail(&(msg->link), &(kcs_info->hp_xmit_msgs)); ++		} else { ++			list_add_tail(&(msg->link), &(kcs_info->xmit_msgs)); ++		} ++	} ++	 ++	spin_unlock_irqrestore(&(kcs_info->kcs_lock), flags); ++} ++ ++static void set_run_to_completion(void *send_info, int i_run_to_completion) ++{ ++	struct kcs_info *kcs_info = (struct kcs_info *) send_info; ++	enum kcs_result result; ++	unsigned long   flags; ++ ++	spin_lock_irqsave(&(kcs_info->kcs_lock), flags); ++ ++	kcs_info->run_to_completion = i_run_to_completion; ++	if (i_run_to_completion) { ++		result = kcs_event_handler(kcs_info, 0); ++		while (result != KCS_SM_IDLE) { ++			udelay(500); ++			result = kcs_event_handler(kcs_info, 500); ++		} ++	} ++ ++	spin_unlock_irqrestore(&(kcs_info->kcs_lock), flags); ++} ++ ++static void request_events(void *send_info) ++{ ++	struct kcs_info *kcs_info = (struct kcs_info *) send_info; ++ ++	kcs_info->req_events = 1; ++} ++ ++static void new_user(void *send_info) ++{ ++	MOD_INC_USE_COUNT; ++} ++ ++static void user_left(void *send_info) ++{ ++	MOD_DEC_USE_COUNT; ++} ++ ++/* Call every 10 ms. */ ++#define KCS_TIMEOUT_TIME_USEC	10000 ++#define KCS_USEC_PER_JIFFY	(1000000/HZ) ++#define KCS_TIMEOUT_JIFFIES	(KCS_TIMEOUT_TIME_USEC/KCS_USEC_PER_JIFFY) ++#define KCS_SHORT_TIMEOUT_USEC  500 /* .5ms when the SM request a ++                                       short timeout */ ++static int initialized = 0; ++ ++static void kcs_timeout(unsigned long data) ++{ ++	struct kcs_info *kcs_info = (struct kcs_info *) data; ++	enum kcs_result kcs_result; ++	unsigned long   flags; ++	unsigned long   jiffies_now; ++	unsigned long   time_diff; ++#ifdef DEBUG_TIMING ++	struct timeval t; ++#endif ++ ++	if (kcs_info->stop_operation) { ++		kcs_info->timer_stopped = 1; ++		return; ++	} ++ ++	spin_lock_irqsave(&(kcs_info->kcs_lock), flags); ++#ifdef DEBUG_TIMING ++	do_gettimeofday(&t); ++	printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec); ++#endif ++	jiffies_now = jiffies; ++	time_diff = ((jiffies_now - kcs_info->last_timeout_jiffies) ++		     * KCS_USEC_PER_JIFFY); ++	kcs_result = kcs_event_handler(kcs_info, time_diff); ++ ++	spin_unlock_irqrestore(&(kcs_info->kcs_lock), flags); ++ ++	kcs_info->last_timeout_jiffies = jiffies_now; ++ ++	if ((kcs_info->irq) && (! kcs_info->interrupt_disabled)) { ++		/* Running with interrupts, only do long timeouts. */ ++		kcs_info->kcs_timer.expires = jiffies + KCS_TIMEOUT_JIFFIES; ++		goto do_add_timer; ++	} ++ ++	/* If the state machine asks for a short delay, then shorten ++           the timer timeout. */ ++#ifdef CONFIG_HIGH_RES_TIMERS ++	if (kcs_result == KCS_CALL_WITH_DELAY) { ++		kcs_info->kcs_timer.sub_expires ++			+= usec_to_arch_cycles(KCS_SHORT_TIMEOUT_USEC); ++		while (kcs_info->kcs_timer.sub_expires >= cycles_per_jiffies) { ++			kcs_info->kcs_timer.expires++; ++			kcs_info->kcs_timer.sub_expires -= cycles_per_jiffies; ++		} ++	} else { ++		kcs_info->kcs_timer.expires = jiffies + KCS_TIMEOUT_JIFFIES; ++	} ++#else ++	/* If we have a fast clock tick, we take advantage of it. */ ++	if (kcs_result == KCS_CALL_WITH_DELAY) { ++		kcs_info->kcs_timer.expires = jiffies + 1; ++	} else { ++		kcs_info->kcs_timer.expires = jiffies + KCS_TIMEOUT_JIFFIES; ++	} ++#endif ++ ++ do_add_timer: ++	add_timer(&(kcs_info->kcs_timer)); ++} ++ ++static void kcs_irq_handler(int irq, void *data, struct pt_regs *regs) ++{ ++	struct kcs_info *kcs_info = (struct kcs_info *) data; ++	unsigned long   flags; ++#ifdef DEBUG_TIMING ++	struct timeval t; ++#endif ++ ++	spin_lock_irqsave(&(kcs_info->kcs_lock), flags); ++#ifdef DEBUG_TIMING ++	do_gettimeofday(&t); ++	printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec); ++#endif ++	kcs_event_handler(kcs_info, 0); ++	spin_unlock_irqrestore(&(kcs_info->kcs_lock), flags); ++} ++ ++static struct ipmi_smi_handlers handlers = ++{ ++	sender:		       sender, ++	request_events:        request_events, ++	new_user:	       new_user, ++	user_left:	       user_left, ++	set_run_to_completion: set_run_to_completion ++}; ++ ++static unsigned char ipmi_kcs_dev_rev; ++static unsigned char ipmi_kcs_fw_rev_major; ++static unsigned char ipmi_kcs_fw_rev_minor; ++static unsigned char ipmi_version_major; ++static unsigned char ipmi_version_minor; ++ ++extern int kcs_dbg; ++static int ipmi_kcs_detect_hardware(int port, struct kcs_data *data) ++{ ++	unsigned char   msg[2]; ++	unsigned char   resp[IPMI_MAX_MSG_LENGTH]; ++	unsigned long   resp_len; ++	enum kcs_result kcs_result; ++ ++	/* It's impossible for the KCS status register to be all 1's, ++	   but that's what you get from reading a bogus address, so we ++	   test that first. */ ++	if (inb(port+1) == 0xff) ++		return -ENODEV; ++ ++	/* Do a Get Device ID command, since it comes back with some ++	   useful info. */ ++	msg[0] = IPMI_NETFN_APP_REQUEST << 2; ++	msg[1] = IPMI_GET_DEVICE_ID_CMD; ++	start_kcs_transaction(data, msg, 2); ++	 ++	kcs_result = kcs_event(data, 0); ++	for (;;) ++	{ ++		if (kcs_result == KCS_CALL_WITH_DELAY) { ++			udelay(100); ++			kcs_result = kcs_event(data, 100); ++		} ++		else if (kcs_result == KCS_CALL_WITHOUT_DELAY) ++		{ ++			kcs_result = kcs_event(data, 0); ++		} ++		else ++			break; ++	} ++	if (kcs_result == KCS_SM_HOSED) { ++		/* We couldn't get the state machine to run, so whatever's at ++		   the port is probably not an IPMI KCS interface. */ ++		return -ENODEV; ++	} ++	/* Otherwise, we got some data. */ ++	resp_len = kcs_get_result(data, resp, IPMI_MAX_MSG_LENGTH); ++	if (resp_len < 6) ++		/* That's odd, it should be longer. */ ++		return -EINVAL; ++	 ++	if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) ++		/* That's odd, it shouldn't be able to fail. */ ++		return -EINVAL; ++	 ++	ipmi_kcs_dev_rev = resp[4] & 0xf; ++	ipmi_kcs_fw_rev_major = resp[5] & 0x7f; ++	ipmi_kcs_fw_rev_minor = resp[6]; ++	ipmi_version_major = resp[7] & 0xf; ++	ipmi_version_minor = resp[7] >> 4; ++ ++	return 0; ++} ++ ++#define MAX_KCS_DRIVERS 4 ++static struct kcs_info *kcs_info[MAX_KCS_DRIVERS]; ++ ++#define DEVICE_NAME "ipmi_kcs" ++ ++#define DEFAULT_IO_ADDR 0xca2 ++ ++static int kcs_addrs[MAX_KCS_DRIVERS] = { 0, -1, -1, -1 }; ++static int kcs_irqs[MAX_KCS_DRIVERS] = { 0, 0, 0, 0 }; ++ ++MODULE_PARM(kcs_addrs, "1-4i"); ++MODULE_PARM(kcs_irqs, "1-4i"); ++ ++/* Returns 0 if initialized, or negative on an error. */ ++static int init_one_kcs(int kcs_addr, int irq, struct kcs_info **kcs) ++{ ++	int rv; ++	struct kcs_info *new_kcs; ++	 ++ ++	/* The setup set the kcs address negative if it wants to ++           disable the driver. */ ++	if (kcs_addr < 0) ++		return -ENODEV; ++ ++	new_kcs = kmalloc(kcs_size(), GFP_KERNEL); ++	if (!new_kcs) { ++		printk(KERN_ERR "Unable to initialize KCS, out of memory\n"); ++		return -ENOMEM; ++	} ++ ++	/* So we know not to free it unless we have allocated one. */ ++	new_kcs->kcs_sm = NULL; ++ ++	if (kcs_addr == 0) { ++		kcs_addr = DEFAULT_IO_ADDR; ++	} ++ ++	new_kcs->addr = kcs_addr; ++ ++	if (request_region(kcs_addr, 2, DEVICE_NAME) == NULL) { ++		kfree(new_kcs); ++		printk(KERN_ERR "ipmi_kcs: Unable to get IO at 0x%4.4x\n", ++		       kcs_addr); ++		return -EIO; ++	} ++ ++	new_kcs->kcs_sm = kmalloc(kcs_size(), GFP_KERNEL); ++	if (!new_kcs->kcs_sm) { ++		printk(KERN_ERR "Unable to initialize KCS, out of memory\n"); ++		rv = -ENOMEM; ++		goto out_err; ++	} ++	init_kcs_data(new_kcs->kcs_sm, kcs_addr); ++	spin_lock_init(&(new_kcs->kcs_lock)); ++ ++	rv = ipmi_kcs_detect_hardware(kcs_addr, new_kcs->kcs_sm); ++	if (rv) { ++		printk(KERN_ERR "ipmi_kcs_intf: Could not detect KCS" ++		       " interface at 0x%4.4x\n", kcs_addr); ++		rv = -ENODEV; ++		goto out_err; ++	} ++ ++	if (irq != 0) { ++		rv = request_irq(irq, ++				 kcs_irq_handler, ++				 SA_INTERRUPT, ++				 DEVICE_NAME, ++				 new_kcs); ++		if (rv) { ++			printk(KERN_WARNING ++			       "%s: Unable to claim interrupt %d," ++			       " running polled\n", ++			       DEVICE_NAME, irq); ++			irq = 0; ++		} ++	} ++	new_kcs->irq = irq; ++ ++	INIT_LIST_HEAD(&(new_kcs->xmit_msgs)); ++	INIT_LIST_HEAD(&(new_kcs->hp_xmit_msgs)); ++	new_kcs->curr_msg = NULL; ++	new_kcs->req_events = 0; ++	new_kcs->run_to_completion = 0; ++ ++	start_clear_flags(new_kcs); ++ ++	if (irq) { ++		new_kcs->kcs_state = KCS_CLEARING_FLAGS_THEN_SET_IRQ; ++ ++		printk(KERN_INFO "Initializing KCS driver at 0x%x, irq %d\n", ++		       kcs_addr, irq); ++ ++	} else { ++		printk(KERN_INFO "Initializing KCS driver at 0x%x, no irq\n", ++		       kcs_addr); ++	} ++ ++	rv = ipmi_register_smi(&handlers, ++			       new_kcs, ++			       ipmi_version_major, ++			       ipmi_version_minor, ++			       &(new_kcs->intf)); ++	if (rv) { ++		free_irq(irq, new_kcs); ++		printk(KERN_ERR "Unable to register IPMI KCS device: %d\n", ++		       rv); ++		goto out_err; ++	} ++ ++	new_kcs->interrupt_disabled = 0; ++	new_kcs->timer_stopped = 0; ++	new_kcs->stop_operation = 0; ++	new_kcs->last_timeout_jiffies = jiffies; ++ ++	init_timer(&(new_kcs->kcs_timer)); ++	new_kcs->kcs_timer.data = (long) new_kcs; ++	new_kcs->kcs_timer.function = kcs_timeout; ++	new_kcs->kcs_timer.expires = jiffies + KCS_TIMEOUT_JIFFIES; ++	add_timer(&(new_kcs->kcs_timer)); ++ ++	*kcs = new_kcs; ++ ++	return 0; ++ ++ out_err: ++	release_region (kcs_addr, 2); ++	if (new_kcs->kcs_sm) ++		kfree(new_kcs->kcs_sm); ++	kfree(new_kcs); ++	return rv; ++} ++ ++static __init int init_ipmi_kcs(void) ++{ ++	int rv; ++	int pos; ++	int i; ++ ++	if (initialized) ++		return 0; ++	initialized = 1; ++ ++	pos = 0; ++	for (i=0; i<MAX_KCS_DRIVERS; i++) { ++		rv = init_one_kcs(kcs_addrs[i], kcs_irqs[i], &(kcs_info[pos])); ++		if (rv == 0) { ++			pos++; ++		} ++	} ++ ++	if (kcs_info[0] == NULL) { ++		printk("ipmi_kcs_intf: Unable to find any KCS interfaces\n"); ++		return -ENODEV; ++	} else ++		return 0; ++} ++ ++#ifdef MODULE ++void __exit cleanup_one_kcs(struct kcs_info *to_clean) ++{ ++	int rv; ++ ++	if (! to_clean) ++		return; ++ ++	if (to_clean->irq != 0) ++		free_irq(to_clean->irq, to_clean); ++ ++	release_region (to_clean->addr, 2); ++ ++	/* Tell the timer to stop, then wait for it to stop.  This avoids ++	   problems with race conditions removing the timer here. */ ++	to_clean->stop_operation = 1; ++	while (!to_clean->timer_stopped) { ++		schedule_timeout(1); ++	} ++ ++	rv = ipmi_unregister_smi(to_clean->intf); ++	if (rv) { ++		printk(KERN_ERR "Unable to unregister IPMI KCS device: %d\n", ++		       rv); ++	} ++ ++	initialized = 0; ++ ++	kfree(to_clean->kcs_sm); ++	kfree(to_clean); ++} ++ ++static __exit void cleanup_ipmi_kcs(void) ++{ ++	int i; ++ ++	if (!initialized) ++		return; ++ ++	for (i=0; i<MAX_KCS_DRIVERS; i++) { ++		cleanup_one_kcs(kcs_info[i]); ++	} ++} ++module_exit(cleanup_ipmi_kcs); ++#else ++static int __init ipmi_kcs_setup(char *str) ++{ ++	int val, rv = 2, pos; ++	char *s; ++ ++ ++	pos = 0; ++	while ((pos < 4) && (rv == 2)) { ++		rv = get_option(&str, &val); ++		if (rv == 0) { ++			s = strsep(&str, ","); ++			if (strcmp(s, "off") == 0) { ++				kcs_addrs[pos] = -1; ++				goto got_addr; ++			} else  ++				break; ++		} else { ++			kcs_addrs[pos] = val; ++			if (rv == 2) { ++			got_addr: ++				rv = get_option(&str, &val); ++				if (rv) ++					kcs_irqs[pos] = val; ++			} ++		} ++		pos++; ++	} ++ ++	return 1; ++} ++__setup("ipmi_kcs=", ipmi_kcs_setup); ++#endif ++ ++module_init(init_ipmi_kcs); ++MODULE_LICENSE("GPL"); +diff -urN linux.orig/drivers/char/ipmi/ipmi_kcs_sm.c linux/drivers/char/ipmi/ipmi_kcs_sm.c +--- linux.orig/drivers/char/ipmi/ipmi_kcs_sm.c	Wed Dec 31 18:00:00 1969 ++++ linux/drivers/char/ipmi/ipmi_kcs_sm.c	Mon Oct 28 16:38:23 2002 +@@ -0,0 +1,449 @@ ++/* ++ * ipmi_kcs_sm.c ++ * ++ * State machine for handling IPMI KCS interfaces. ++ * ++ * Author: MontaVista Software, Inc. ++ *         Corey Minyard <minyard@mvista.com> ++ *         source@mvista.com ++ * ++ * Copyright 2002 MontaVista Software Inc. ++ * ++ *  This program is free software; you can redistribute it and/or modify it ++ *  under the terms of the GNU General Public License as published by the ++ *  Free Software Foundation; either version 2 of the License, or (at your ++ *  option) any later version. ++ * ++ * ++ *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED ++ *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ++ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ++ *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS ++ *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ++ *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR ++ *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ++ *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ *  You should have received a copy of the GNU General Public License along ++ *  with this program; if not, write to the Free Software Foundation, Inc., ++ *  675 Mass Ave, Cambridge, MA 02139, USA. ++ */ ++ ++/* ++ * This state machine is taken from the state machine in the IPMI spec, ++ * pretty much verbatim.  If you have questions about the states, see ++ * that document. ++ */ ++ ++#include <asm/io.h> ++ ++#include "ipmi_kcs_sm.h" ++ ++/* Set this if you want a printout of why the state machine was hosed ++   when it gets hosed. */ ++#define DEBUG_HOSED_REASON ++ ++/* Print the state machine state on entry every time. */ ++#undef DEBUG_STATE ++ ++/* The states the KCS driver may be in. */ ++enum kcs_states { ++	KCS_IDLE,		/* The KCS interface is currently ++                                   doing nothing. */ ++	KCS_START_OP,		/* We are starting an operation.  The ++				   data is in the output buffer, but ++				   nothing has been done to the ++				   interface yet.  This was added to ++				   the state machine in the spec to ++				   wait for the initial IBF. */ ++	KCS_WAIT_WRITE_START,	/* We have written a write cmd to the ++				   interface. */ ++	KCS_WAIT_WRITE,		/* We are writing bytes to the ++                                   interface. */ ++	KCS_WAIT_WRITE_END,	/* We have written the write end cmd ++                                   to the interface, and still need to ++                                   write the last byte. */ ++	KCS_WAIT_READ,		/* We are waiting to read data from ++				   the interface. */ ++	KCS_ERROR0,		/* State to transition to the error ++				   handler, this was added to the ++				   state machine in the spec to be ++				   sure IBF was there. */ ++	KCS_ERROR1,		/* First stage error handler, wait for ++                                   the interface to respond. */ ++	KCS_ERROR2,		/* The abort cmd has been written, ++				   wait for the interface to ++				   respond. */ ++	KCS_ERROR3,		/* We wrote some data to the ++				   interface, wait for it to switch to ++				   read mode. */ ++	KCS_HOSED		/* The hardware failed to follow the ++				   state machine. */ ++}; ++ ++#define MAX_KCS_READ_SIZE 80 ++#define MAX_KCS_WRITE_SIZE 80 ++ ++/* Timeouts in microseconds. */ ++#define IBF_RETRY_TIMEOUT 1000000 ++#define OBF_RETRY_TIMEOUT 1000000 ++#define MAX_ERROR_RETRIES 10 ++ ++#define IPMI_ERR_MSG_TRUNCATED	0xc6 ++ ++struct kcs_data ++{ ++	enum kcs_states state; ++	unsigned int    port; ++	unsigned char   write_data[MAX_KCS_WRITE_SIZE]; ++	int             write_pos; ++	int             write_count; ++	int             orig_write_count; ++	unsigned char   read_data[MAX_KCS_READ_SIZE]; ++	int             read_pos; ++	int	        truncated; ++ ++	unsigned int  error_retries; ++	long          ibf_timeout; ++	long          obf_timeout; ++}; ++ ++void init_kcs_data(struct kcs_data *kcs, unsigned int port) ++{ ++	kcs->state = KCS_IDLE; ++	kcs->port = port; ++	kcs->write_pos = 0; ++	kcs->write_count = 0; ++	kcs->orig_write_count = 0; ++	kcs->read_pos = 0; ++	kcs->error_retries = 0; ++	kcs->truncated = 0; ++	kcs->ibf_timeout = IBF_RETRY_TIMEOUT; ++	kcs->obf_timeout = OBF_RETRY_TIMEOUT; ++} ++ ++static inline unsigned char read_status(struct kcs_data *kcs) ++{ ++	return inb(kcs->port + 1); ++} ++ ++static inline unsigned char read_data(struct kcs_data *kcs) ++{ ++	return inb(kcs->port + 0); ++} ++ ++static inline void write_cmd(struct kcs_data *kcs, unsigned char data) ++{ ++	outb(data, kcs->port + 1); ++} ++ ++static inline void write_data(struct kcs_data *kcs, unsigned char data) ++{ ++	outb(data, kcs->port + 0); ++} ++ ++/* Control codes. */ ++#define KCS_GET_STATUS_ABORT	0x60 ++#define KCS_WRITE_START		0x61 ++#define KCS_WRITE_END		0x62 ++#define KCS_READ_BYTE		0x68 ++ ++/* Status bits. */ ++#define GET_STATUS_STATE(status) (((status) >> 6) & 0x03) ++#define KCS_IDLE_STATE	0 ++#define KCS_READ_STATE	1 ++#define KCS_WRITE_STATE	2 ++#define KCS_ERROR_STATE	3 ++#define GET_STATUS_ATN(status) ((status) & 0x04) ++#define GET_STATUS_IBF(status) ((status) & 0x02) ++#define GET_STATUS_OBF(status) ((status) & 0x01) ++ ++ ++static inline void write_next_byte(struct kcs_data *kcs) ++{ ++	write_data(kcs, kcs->write_data[kcs->write_pos]); ++	(kcs->write_pos)++; ++	(kcs->write_count)--; ++} ++ ++static inline void start_error_recovery(struct kcs_data *kcs, char *reason) ++{ ++	(kcs->error_retries)++; ++	if (kcs->error_retries > MAX_ERROR_RETRIES) { ++#ifdef DEBUG_HOSED_REASON ++		printk("ipmi_kcs_sm: kcs hosed: %s\n", reason); ++#endif ++		kcs->state = KCS_HOSED; ++	} else { ++		kcs->state = KCS_ERROR0; ++	} ++} ++ ++static inline void read_next_byte(struct kcs_data *kcs) ++{ ++	if (kcs->read_pos >= MAX_KCS_READ_SIZE) { ++		/* Throw the data away and mark it truncated. */ ++		read_data(kcs); ++		kcs->truncated = 1; ++	} else { ++		kcs->read_data[kcs->read_pos] = read_data(kcs); ++		(kcs->read_pos)++; ++	} ++	write_data(kcs, KCS_READ_BYTE); ++} ++ ++static inline int check_ibf(struct kcs_data *kcs, ++			    unsigned char   status, ++			    long            time) ++{ ++	if (GET_STATUS_IBF(status)) { ++		kcs->ibf_timeout -= time; ++		if (kcs->ibf_timeout < 0) { ++			start_error_recovery(kcs, "IBF not ready in time"); ++			return 1; ++		} ++		return 0; ++	} ++	kcs->ibf_timeout = IBF_RETRY_TIMEOUT; ++	return 1; ++} ++ ++static inline int check_obf(struct kcs_data *kcs, ++			    unsigned char   status, ++			    long            time) ++{ ++	if (! GET_STATUS_OBF(status)) { ++		kcs->obf_timeout -= time; ++		if (kcs->obf_timeout < 0) { ++		    start_error_recovery(kcs, "OBF not ready in time"); ++		    return 1; ++		} ++		return 0; ++	} ++	kcs->obf_timeout = OBF_RETRY_TIMEOUT; ++	return 1; ++} ++ ++static void clear_obf(struct kcs_data *kcs, unsigned char status) ++{ ++	if (GET_STATUS_OBF(status)) ++		read_data(kcs); ++} ++ ++static void restart_kcs_transaction(struct kcs_data *kcs) ++{ ++	kcs->write_count = kcs->orig_write_count; ++	kcs->write_pos = 0; ++	kcs->read_pos = 0; ++	kcs->state = KCS_WAIT_WRITE_START; ++	kcs->ibf_timeout = IBF_RETRY_TIMEOUT; ++	kcs->obf_timeout = OBF_RETRY_TIMEOUT; ++	write_cmd(kcs, KCS_WRITE_START); ++} ++ ++int start_kcs_transaction(struct kcs_data *kcs, char *data, unsigned int size) ++{ ++	if ((size < 2) || (size > MAX_KCS_WRITE_SIZE)) { ++		return -1; ++	} ++ ++	if ((kcs->state != KCS_IDLE) && (kcs->state != KCS_HOSED)) { ++		return -2; ++	} ++ ++	kcs->error_retries = 0; ++	memcpy(kcs->write_data, data, size); ++	kcs->write_count = size; ++	kcs->orig_write_count = size; ++	kcs->write_pos = 0; ++	kcs->read_pos = 0; ++	kcs->state = KCS_START_OP; ++	kcs->ibf_timeout = IBF_RETRY_TIMEOUT; ++	kcs->obf_timeout = OBF_RETRY_TIMEOUT; ++	return 0; ++} ++ ++int kcs_get_result(struct kcs_data *kcs, unsigned char *data, int length) ++{ ++	if (length < kcs->read_pos) { ++		kcs->read_pos = length; ++		kcs->truncated = 1; ++	} ++ ++	memcpy(data, kcs->read_data, kcs->read_pos); ++ ++	if (kcs->truncated) { ++		/* Report a truncated error.  We might overwrite ++		   another error, but that's too bad, the user needs ++		   to know it was truncated. */ ++		data[2] = IPMI_ERR_MSG_TRUNCATED; ++		kcs->truncated = 0; ++	} ++ ++	return kcs->read_pos; ++} ++ ++/* This implements the state machine defined in the IPMI manual, see ++   that for details on how this works. */ ++enum kcs_result kcs_event(struct kcs_data *kcs, long time) ++{ ++	unsigned char status; ++	unsigned char state; ++ ++	status = read_status(kcs); ++ ++#ifdef DEBUG_STATE ++	printk("  State = %d, %x\n", kcs->state, status); ++#endif ++	/* All states wait for ibf, so just do it here. */ ++	if (!check_ibf(kcs, status, time)) ++		return KCS_CALL_WITH_DELAY; ++ ++	/* Just about everything looks at the KCS state, so grab that, too. */ ++	state = GET_STATUS_STATE(status); ++ ++	switch (kcs->state) { ++	case KCS_IDLE: ++		if (GET_STATUS_ATN(status)) ++			return KCS_ATTN; ++		else ++			return KCS_SM_IDLE; ++ ++	case KCS_START_OP: ++		if (state != KCS_IDLE) { ++			start_error_recovery(kcs, ++					     "State machine not idle at start"); ++			break; ++		} ++ ++		clear_obf(kcs, status); ++		write_cmd(kcs, KCS_WRITE_START); ++		kcs->state = KCS_WAIT_WRITE_START; ++		break; ++ ++	case KCS_WAIT_WRITE_START: ++		if (state != KCS_WRITE_STATE) { ++			start_error_recovery( ++				kcs, ++				"Not in write state at write start"); ++			break; ++		} ++		read_data(kcs); ++		if (kcs->write_count == 1) { ++			write_cmd(kcs, KCS_WRITE_END); ++			kcs->state = KCS_WAIT_WRITE_END; ++		} else { ++			write_next_byte(kcs); ++			kcs->state = KCS_WAIT_WRITE; ++		} ++		break; ++ ++	case KCS_WAIT_WRITE: ++		if (state != KCS_WRITE_STATE) { ++			start_error_recovery(kcs, ++					     "Not in write state for write"); ++			break; ++		} ++		clear_obf(kcs, status); ++		if (kcs->write_count == 1) { ++			write_cmd(kcs, KCS_WRITE_END); ++			kcs->state = KCS_WAIT_WRITE_END; ++		} else { ++			write_next_byte(kcs); ++		} ++		break; ++		 ++	case KCS_WAIT_WRITE_END: ++		if (state != KCS_WRITE_STATE) { ++			start_error_recovery(kcs, ++					     "Not in write state for write end"); ++			break; ++		} ++		clear_obf(kcs, status); ++		write_next_byte(kcs); ++		kcs->state = KCS_WAIT_READ; ++		break; ++ ++	case KCS_WAIT_READ: ++		if ((state != KCS_READ_STATE) && (state != KCS_IDLE_STATE)) { ++			start_error_recovery( ++				kcs, ++				"Not in read or idle in read state"); ++			break; ++		} ++		if (! check_obf(kcs, status, time)) ++			return KCS_CALL_WITH_DELAY; ++ ++		if (state == KCS_READ_STATE) { ++			read_next_byte(kcs); ++		} else { ++			read_data(kcs); ++			kcs->orig_write_count = 0; ++			kcs->state = KCS_IDLE; ++			return KCS_TRANSACTION_COMPLETE; ++		} ++		break; ++ ++	case KCS_ERROR0: ++		clear_obf(kcs, status); ++		write_cmd(kcs, KCS_GET_STATUS_ABORT); ++		kcs->state = KCS_ERROR1; ++		break; ++ ++	case KCS_ERROR1: ++		clear_obf(kcs, status); ++		write_data(kcs, 0); ++		kcs->state = KCS_ERROR2; ++		break; ++		 ++	case KCS_ERROR2: ++		if (state != KCS_READ_STATE) { ++			start_error_recovery(kcs, ++					     "Not in read state for error2"); ++			break; ++		} ++		if (! check_obf(kcs, status, time)) ++			return KCS_CALL_WITH_DELAY; ++ ++		clear_obf(kcs, status); ++		write_data(kcs, KCS_READ_BYTE); ++		kcs->state = KCS_ERROR3; ++		break; ++		 ++	case KCS_ERROR3: ++		if (state != KCS_IDLE_STATE) { ++			start_error_recovery(kcs, ++					     "Not in idle state for error3"); ++			break; ++		} ++ ++		if (! check_obf(kcs, status, time)) ++			return KCS_CALL_WITH_DELAY; ++ ++		clear_obf(kcs, status); ++		if (kcs->orig_write_count) { ++			restart_kcs_transaction(kcs); ++		} else { ++			kcs->state = KCS_IDLE; ++			return KCS_TRANSACTION_COMPLETE; ++		} ++		break; ++			 ++	case KCS_HOSED: ++		return KCS_SM_HOSED; ++	} ++ ++	if (kcs->state == KCS_HOSED) { ++		init_kcs_data(kcs, kcs->port); ++		return KCS_SM_HOSED; ++	} ++ ++	return KCS_CALL_WITHOUT_DELAY; ++} ++ ++int kcs_size(void) ++{ ++	return sizeof(struct kcs_data); ++} +diff -urN linux.orig/drivers/char/ipmi/ipmi_kcs_sm.h linux/drivers/char/ipmi/ipmi_kcs_sm.h +--- linux.orig/drivers/char/ipmi/ipmi_kcs_sm.h	Wed Dec 31 18:00:00 1969 ++++ linux/drivers/char/ipmi/ipmi_kcs_sm.h	Sun Oct 13 16:25:50 2002 +@@ -0,0 +1,69 @@ ++/* ++ * ipmi_kcs_sm.h ++ * ++ * State machine for handling IPMI KCS interfaces. ++ * ++ * Author: MontaVista Software, Inc. ++ *         Corey Minyard <minyard@mvista.com> ++ *         source@mvista.com ++ * ++ * Copyright 2002 MontaVista Software Inc. ++ * ++ *  This program is free software; you can redistribute it and/or modify it ++ *  under the terms of the GNU General Public License as published by the ++ *  Free Software Foundation; either version 2 of the License, or (at your ++ *  option) any later version. ++ * ++ * ++ *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED ++ *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ++ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ++ *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS ++ *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ++ *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR ++ *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ++ *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ *  You should have received a copy of the GNU General Public License along ++ *  with this program; if not, write to the Free Software Foundation, Inc., ++ *  675 Mass Ave, Cambridge, MA 02139, USA. ++ */ ++ ++struct kcs_data; ++ ++void init_kcs_data(struct kcs_data *kcs, ++		   unsigned int    port); ++ ++/* Start a new transaction in the state machine.  This will return -2 ++   if the state machine is not idle, -1 if the size is invalid (to ++   large or too small), or 0 if the transaction is successfully ++   completed. */ ++int start_kcs_transaction(struct kcs_data *kcs, char *data, unsigned int size); ++ ++/* Return the results after the transaction.  This will return -1 if ++   the buffer is too small, zero if no transaction is present, or the ++   actual length of the result data. */ ++int kcs_get_result(struct kcs_data *kcs, unsigned char *data, int length); ++ ++enum kcs_result ++{ ++	KCS_CALL_WITHOUT_DELAY, /* Call the driver again immediately */ ++	KCS_CALL_WITH_DELAY,	/* Delay some before calling again. */ ++	KCS_TRANSACTION_COMPLETE, /* A transaction is finished. */ ++	KCS_SM_IDLE,		/* The SM is in idle state. */ ++	KCS_SM_HOSED,		/* The hardware violated the state machine. */ ++	KCS_ATTN		/* The hardware is asserting attn and the ++				   state machine is idle. */ ++}; ++ ++/* Call this periodically (for a polled interface) or upon receiving ++   an interrupt (for a interrupt-driven interface).  If interrupt ++   driven, you should probably poll this periodically when not in idle ++   state.  This should be called with the time that passed since the ++   last call, if it is significant.  Time is in microseconds. */ ++enum kcs_result kcs_event(struct kcs_data *kcs, long time); ++ ++/* Return the size of the KCS structure in bytes. */ ++int kcs_size(void); +diff -urN linux.orig/drivers/char/ipmi/ipmi_msghandler.c linux/drivers/char/ipmi/ipmi_msghandler.c +--- linux.orig/drivers/char/ipmi/ipmi_msghandler.c	Wed Dec 31 18:00:00 1969 ++++ linux/drivers/char/ipmi/ipmi_msghandler.c	Wed Oct 30 13:51:55 2002 +@@ -0,0 +1,1797 @@ ++/* ++ * ipmi_msghandler.c ++ * ++ * Incoming and outgoing message routing for an IPMI interface. ++ * ++ * Author: MontaVista Software, Inc. ++ *         Corey Minyard <minyard@mvista.com> ++ *         source@mvista.com ++ * ++ * Copyright 2002 MontaVista Software Inc. ++ * ++ *  This program is free software; you can redistribute it and/or modify it ++ *  under the terms of the GNU General Public License as published by the ++ *  Free Software Foundation; either version 2 of the License, or (at your ++ *  option) any later version. ++ * ++ * ++ *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED ++ *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ++ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ++ *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS ++ *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ++ *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR ++ *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ++ *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ *  You should have received a copy of the GNU General Public License along ++ *  with this program; if not, write to the Free Software Foundation, Inc., ++ *  675 Mass Ave, Cambridge, MA 02139, USA. ++ */ ++ ++#include <linux/config.h> ++#include <linux/module.h> ++#include <linux/errno.h> ++#include <asm/system.h> ++#include <linux/sched.h> ++#include <linux/poll.h> ++#include <linux/spinlock.h> ++#include <linux/slab.h> ++#include <linux/ipmi.h> ++#include <linux/ipmi_smi.h> ++#include <linux/notifier.h> ++#include <linux/init.h> ++ ++struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); ++static int ipmi_init_msghandler(void); ++ ++static int initialized = 0; ++ ++#define MAX_EVENTS_IN_QUEUE	25 ++ ++struct ipmi_user ++{ ++	struct list_head link; ++ ++	/* The upper layer that handles receive messages. */ ++	struct ipmi_user_hndl *handler; ++	void             *handler_data; ++ ++	/* The interface this user is bound to. */ ++	ipmi_smi_t intf; ++ ++	/* Does this interface receive IPMI events? */ ++	int gets_events; ++}; ++ ++struct cmd_rcvr ++{ ++	struct list_head link; ++ ++	ipmi_user_t   user; ++	unsigned char netfn; ++	unsigned char cmd; ++}; ++ ++#define IPMI_IPMB_NUM_SEQ	64 ++struct ipmi_smi ++{ ++	/* The list of upper layers that are using me.  We read-lock ++           this when delivering messages to the upper layer to keep ++           the user from going away while we are processing the ++           message.  This means that you cannot add or delete a user ++           from the receive callback. */ ++	rwlock_t                users_lock; ++	struct list_head        users; ++ ++	/* The IPMI version of the BMC on the other end. */ ++	unsigned char       version_major; ++	unsigned char       version_minor; ++ ++	/* This is the lower-layer's sender routine. */ ++	struct ipmi_smi_handlers *handlers; ++	void                     *send_info; ++ ++	/* A table of sequence numbers for this interface.  We use the ++           sequence numbers for IPMB messages that go out of the ++           interface to match them up with their responses.  A routine ++           is called periodically to time the items in this list. */ ++	spinlock_t              seq_lock; ++	struct { ++		unsigned long   timeout; ++		int             inuse; ++		struct ipmi_recv_msg *recv_msg; ++	} seq_table[IPMI_IPMB_NUM_SEQ]; ++	int curr_seq; ++ ++	/* Messages that were delayed for some reason (out of memory, ++           for instance), will go in here to be processed later in a ++           periodic timer interrupt. */ ++	spinlock_t       waiting_msgs_lock; ++	struct list_head waiting_msgs; ++ ++	/* The list of command receivers that are registered for commands ++	   on this interface. */ ++	rwlock_t	 cmd_rcvr_lock; ++	struct list_head cmd_rcvrs; ++ ++	/* Events that were queues because no one was there to receive ++           them. */ ++	spinlock_t       events_lock; /* For dealing with event stuff. */ ++	struct list_head waiting_events; ++	unsigned int     waiting_events_count; /* How many events in queue? */ ++ ++	/* This will be non-null if someone registers to receive all ++	   IPMI commands (this is for interface emulation).  There ++	   may not be any things in the cmd_rcvrs list above when ++	   this is registered. */ ++	ipmi_user_t all_cmd_rcvr; ++ ++	/* My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR, ++	   but may be changed by the user. */ ++	unsigned char my_address; ++ ++	/* My LUN.  This should generally stay the SMS LUN, but just in ++	   case... */ ++	unsigned char my_lun; ++}; ++ ++int ++ipmi_register_all_cmd_rcvr(ipmi_user_t user) ++{ ++	int flags; ++	int rv = -EBUSY; ++ ++	write_lock_irqsave(&(user->intf->users_lock), flags); ++	write_lock(&(user->intf->cmd_rcvr_lock)); ++	if ((user->intf->all_cmd_rcvr == NULL) ++	    && (list_empty(&(user->intf->cmd_rcvrs)))) ++	{ ++		user->intf->all_cmd_rcvr = user; ++		rv = 0; ++	} ++	write_unlock(&(user->intf->cmd_rcvr_lock)); ++	write_unlock_irqrestore(&(user->intf->users_lock), flags); ++	return rv; ++} ++ ++int ++ipmi_unregister_all_cmd_rcvr(ipmi_user_t user) ++{ ++	int flags; ++	int rv = -EINVAL; ++ ++	write_lock_irqsave(&(user->intf->users_lock), flags); ++	write_lock(&(user->intf->cmd_rcvr_lock)); ++	if (user->intf->all_cmd_rcvr == user) ++	{ ++		user->intf->all_cmd_rcvr = NULL; ++		rv = 0; ++	} ++	write_unlock(&(user->intf->cmd_rcvr_lock)); ++	write_unlock_irqrestore(&(user->intf->users_lock), flags); ++	return rv; ++} ++ ++ ++#define MAX_IPMI_INTERFACES 4 ++static ipmi_smi_t ipmi_interfaces[MAX_IPMI_INTERFACES]; ++/* The locking for these for a write lock is done by two locks, first ++   the "outside" lock then the normal lock.  This way, the interfaces ++   lock can be converted to a read lock without allowing a new write ++   locker to come in.  Note that at interrupt level, this can only be ++   claimed read, so there is no reason for read lock to save ++   interrupts.  Write locks must still save interrupts because they ++   can block an interrupt. */ ++static rwlock_t interfaces_lock = RW_LOCK_UNLOCKED; ++static spinlock_t interfaces_outside_lock = SPIN_LOCK_UNLOCKED; ++ ++static struct list_head smi_watchers = LIST_HEAD_INIT(smi_watchers); ++static rwlock_t smi_watcher_lock = RW_LOCK_UNLOCKED; ++ ++int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher) ++{ ++	int i; ++ ++	read_lock(&interfaces_lock); ++	write_lock(&smi_watcher_lock); ++	list_add(&(watcher->link), &smi_watchers); ++	for (i=0; i<MAX_IPMI_INTERFACES; i++) { ++		if (ipmi_interfaces[i] != NULL) { ++			watcher->new_smi(i); ++		} ++	} ++	write_unlock(&smi_watcher_lock); ++	read_unlock(&interfaces_lock); ++	return 0; ++} ++ ++int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher) ++{ ++	write_lock(&smi_watcher_lock); ++	list_del(&(watcher->link)); ++	write_unlock(&smi_watcher_lock); ++	return 0; ++} ++ ++int ++ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2) ++{ ++	if (addr1->addr_type != addr2->addr_type) ++		return 0; ++ ++	if (addr1->channel != addr2->channel) ++		return 0; ++ ++	if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { ++		struct ipmi_system_interface_addr *smi_addr1 ++		    = (struct ipmi_system_interface_addr *) addr1; ++		struct ipmi_system_interface_addr *smi_addr2 ++		    = (struct ipmi_system_interface_addr *) addr2; ++		return (smi_addr1->lun == smi_addr2->lun); ++	} ++ ++	if ((addr1->addr_type == IPMI_IPMB_ADDR_TYPE) ++	    || (addr1->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) ++	{ ++		struct ipmi_ipmb_addr *ipmb_addr1 ++		    = (struct ipmi_ipmb_addr *) addr1; ++		struct ipmi_ipmb_addr *ipmb_addr2 ++		    = (struct ipmi_ipmb_addr *) addr2; ++ ++		return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr) ++			&& (ipmb_addr1->lun == ipmb_addr2->lun)); ++	} ++ ++	return 1; ++} ++ ++int ipmi_validate_addr(struct ipmi_addr *addr, int len) ++{ ++	if (len < sizeof(struct ipmi_system_interface_addr)) { ++		return -EINVAL; ++	} ++ ++	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { ++		if (addr->channel != IPMI_BMC_CHANNEL) ++			return -EINVAL; ++		return 0; ++	} ++ ++	if ((addr->channel == IPMI_BMC_CHANNEL) ++	    || (addr->channel >= IPMI_NUM_CHANNELS) ++	    || (addr->channel < 0)) ++		return -EINVAL; ++ ++	if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE) ++	    || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) ++	{ ++		if (len < sizeof(struct ipmi_ipmb_addr)) { ++			return -EINVAL; ++		} ++		return 0; ++	} ++ ++	return -EINVAL; ++} ++ ++unsigned int ipmi_addr_length(int addr_type) ++{ ++	if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) ++		return sizeof(struct ipmi_system_interface_addr); ++ ++	if ((addr_type == IPMI_IPMB_ADDR_TYPE) ++	    || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) ++	{ ++		return sizeof(struct ipmi_ipmb_addr); ++	} ++ ++	return 0; ++} ++ ++static void deliver_response(struct ipmi_recv_msg *msg) ++{ ++    msg->user->handler->ipmi_recv_hndl(msg, msg->user->handler_data); ++} ++ ++/* Find the next sequence number not being used and add the given ++   message with the given timeout to the sequence table. */ ++static int intf_next_seq(ipmi_smi_t           intf, ++			 struct ipmi_recv_msg *recv_msg, ++			 unsigned long        timeout, ++			 unsigned char        *seq) ++{ ++	int           rv = 0; ++	unsigned long flags; ++	unsigned int  i; ++ ++	spin_lock_irqsave(&(intf->seq_lock), flags); ++	for (i=intf->curr_seq; ++	     i!=(intf->curr_seq-1); ++	     i=(i+1)%IPMI_IPMB_NUM_SEQ) ++	{ ++		if (! intf->seq_table[i].inuse) ++			break; ++	} ++ ++	if (! intf->seq_table[i].inuse) { ++		intf->seq_table[i].recv_msg = recv_msg; ++		intf->seq_table[i].timeout = timeout; ++		intf->seq_table[i].inuse = 1; ++		*seq = i; ++		intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ; ++	} else { ++		rv = -EAGAIN; ++	} ++	 ++	spin_unlock_irqrestore(&(intf->seq_lock), flags); ++ ++	return rv; ++} ++ ++/* Return the receive message for the given sequence number and ++   release the sequence number so it can be reused.  Some other data ++   is passed in to be sure the message matches up correctly (to help ++   guard against message coming in after their timeout and the ++   sequence number being reused). */ ++static int intf_find_seq(ipmi_smi_t           intf, ++			 unsigned char        seq, ++			 short                channel, ++			 unsigned char        cmd, ++			 unsigned char        netfn, ++			 struct ipmi_addr     *addr, ++			 struct ipmi_recv_msg **recv_msg) ++{ ++	int           rv = -ENODEV; ++	unsigned long flags; ++ ++	if (seq >= IPMI_IPMB_NUM_SEQ) ++		return -EINVAL; ++ ++	spin_lock_irqsave(&(intf->seq_lock), flags); ++	if (intf->seq_table[seq].inuse) { ++		struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg; ++ ++		if ((msg->addr.channel == channel) ++		    && (msg->msg.cmd == cmd) ++		    && (msg->msg.netfn == netfn) ++		    && (ipmi_addr_equal(addr, &(msg->addr)))) ++		{ ++			*recv_msg = msg; ++			intf->seq_table[seq].inuse = 0; ++			rv = 0; ++		} ++	} ++	spin_unlock_irqrestore(&(intf->seq_lock), flags); ++ ++	return rv; ++} ++ ++ ++int ipmi_create_user(unsigned int          if_num, ++		     struct ipmi_user_hndl *handler, ++		     void                  *handler_data, ++		     ipmi_user_t           *user) ++{ ++	unsigned long flags; ++	ipmi_user_t   new_user; ++	int           rv = 0; ++ ++	if (handler == NULL) ++		return -EINVAL; ++ ++	MOD_INC_USE_COUNT; ++ ++	/* Make sure the driver is actually initialized, this handles ++	   problems with initialization order. */ ++	if (!initialized) { ++		rv = ipmi_init_msghandler(); ++		if (rv) { ++			MOD_DEC_USE_COUNT; ++			return rv; ++		} ++		/* The init code doesn't return an error if it was turned ++		   off, but it won't initialize.  Check that. */ ++		if (!initialized) { ++			MOD_DEC_USE_COUNT; ++			return -ENODEV; ++		} ++	} ++ ++	new_user = kmalloc(sizeof(*new_user), GFP_KERNEL); ++	if (! new_user) { ++		MOD_DEC_USE_COUNT; ++		return -ENOMEM; ++	} ++ ++	read_lock(&interfaces_lock); ++	if ((if_num > MAX_IPMI_INTERFACES) || ipmi_interfaces[if_num] == NULL) ++	{ ++		rv = -EINVAL; ++		goto out_unlock; ++	} ++ ++	new_user->handler = handler; ++	new_user->handler_data = handler_data; ++	new_user->intf = ipmi_interfaces[if_num]; ++	new_user->gets_events = 0; ++ ++	write_lock_irqsave(&(new_user->intf->users_lock), flags); ++	list_add_tail(&(new_user->link), &(new_user->intf->users)); ++	write_unlock_irqrestore(&(new_user->intf->users_lock), flags); ++ ++ out_unlock:	 ++	if (rv) { ++		MOD_DEC_USE_COUNT; ++		kfree(new_user); ++	} else { ++		new_user->intf->handlers->new_user(new_user->intf->send_info); ++		*user = new_user; ++	} ++ ++	read_unlock(&interfaces_lock); ++	return rv; ++} ++ ++static int ipmi_destroy_user_nolock(ipmi_user_t user) ++{ ++	int              rv = -ENODEV; ++	ipmi_user_t      t_user; ++	struct list_head *entry, *entry2; ++	int              i; ++	unsigned long    flags; ++ ++	/* Find the user and delete them from the list. */ ++	list_for_each(entry, &(user->intf->users)) { ++		t_user = list_entry(entry, struct ipmi_user, link); ++		if (t_user == user) { ++			list_del(entry); ++			rv = 0; ++			break; ++		} ++	} ++ ++	if (rv) { ++		goto out_unlock; ++	} ++ ++	/* Remove the user from the interfaces sequence table. */ ++	spin_lock_irqsave(&(user->intf->seq_lock), flags); ++	for (i=0; i<IPMI_IPMB_NUM_SEQ; i++) { ++		if (user->intf->seq_table[i].inuse ++		    && (user->intf->seq_table[i].recv_msg->user == user)) ++		{ ++			user->intf->seq_table[i].inuse = 0; ++		} ++	} ++	spin_unlock_irqrestore(&(user->intf->seq_lock), flags); ++ ++	/* Remove the user from the command receiver's table. */ ++	write_lock_irqsave(&(user->intf->cmd_rcvr_lock), flags); ++	list_for_each_safe(entry, entry2, &(user->intf->cmd_rcvrs)) { ++		struct cmd_rcvr *rcvr; ++		rcvr = list_entry(entry, struct cmd_rcvr, link); ++		if (rcvr->user == user) { ++			list_del(entry); ++			kfree(rcvr); ++		} ++	} ++	write_unlock_irqrestore(&(user->intf->cmd_rcvr_lock), flags); ++ ++	kfree(user); ++ ++ out_unlock: ++ ++	return rv; ++} ++ ++int ipmi_destroy_user(ipmi_user_t user) ++{ ++	int           rv; ++	ipmi_smi_t    intf = user->intf; ++	unsigned long flags; ++ ++	read_lock(&interfaces_lock); ++	write_lock_irqsave(&(intf->users_lock), flags); ++	rv = ipmi_destroy_user_nolock(user); ++	if (!rv) { ++		intf->handlers->user_left(intf->send_info); ++		MOD_DEC_USE_COUNT; ++	} ++		 ++	write_unlock_irqrestore(&(intf->users_lock), flags); ++	read_unlock(&interfaces_lock); ++	return rv; ++} ++ ++void ipmi_get_version(ipmi_user_t   user, ++		      unsigned char *major, ++		      unsigned char *minor) ++{ ++	*major = user->intf->version_major; ++	*minor = user->intf->version_minor; ++} ++ ++void ipmi_set_my_address(ipmi_user_t   user, ++			 unsigned char address) ++{ ++	user->intf->my_address = address; ++} ++ ++unsigned char ipmi_get_my_address(ipmi_user_t user) ++{ ++	return user->intf->my_address; ++} ++ ++void ipmi_set_my_LUN(ipmi_user_t   user, ++		     unsigned char LUN) ++{ ++	user->intf->my_lun = LUN & 0x3; ++} ++ ++unsigned char ipmi_get_my_LUN(ipmi_user_t user) ++{ ++	return user->intf->my_lun; ++} ++ ++int ipmi_set_gets_events(ipmi_user_t user, int val) ++{ ++	unsigned long         flags; ++	struct list_head      *e, *e2; ++	struct ipmi_recv_msg  *msg; ++ ++	read_lock(&(user->intf->users_lock)); ++	spin_lock_irqsave(&(user->intf->events_lock), flags); ++	user->gets_events = val; ++ ++	if (val) { ++		/* Deliver any queued events. */ ++		list_for_each_safe(e, e2, &(user->intf->waiting_events)) { ++			msg = list_entry(e, struct ipmi_recv_msg, link); ++			list_del(e); ++			msg->user = user; ++			deliver_response(msg); ++		} ++	} ++	 ++	spin_unlock_irqrestore(&(user->intf->events_lock), flags); ++	read_unlock(&(user->intf->users_lock)); ++ ++	return 0; ++} ++ ++int ipmi_register_for_cmd(ipmi_user_t   user, ++			  unsigned char netfn, ++			  unsigned char cmd) ++{ ++	struct list_head *entry; ++	unsigned long    flags; ++	struct cmd_rcvr  *rcvr; ++	int              rv = 0; ++ ++ ++	rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL); ++	if (! rcvr) ++		return -ENOMEM; ++ ++	read_lock(&(user->intf->users_lock)); ++	write_lock_irqsave(&(user->intf->cmd_rcvr_lock), flags); ++	if (user->intf->all_cmd_rcvr != NULL) { ++		rv = -EBUSY; ++		goto out_unlock; ++	} ++ ++	/* Make sure the command/netfn is not already registered. */ ++	list_for_each(entry, &(user->intf->cmd_rcvrs)) { ++		rcvr = list_entry(entry, struct cmd_rcvr, link); ++		if ((rcvr->netfn == netfn) || (rcvr->cmd == cmd)) { ++			rv = -EBUSY; ++			break; ++		} ++	} ++ ++	if (! rv) { ++		rcvr->cmd = cmd; ++		rcvr->netfn = netfn; ++		rcvr->user = user; ++		list_add_tail(&(rcvr->link), &(user->intf->cmd_rcvrs)); ++	} ++ out_unlock: ++	write_unlock_irqrestore(&(user->intf->cmd_rcvr_lock), flags); ++	read_unlock(&(user->intf->users_lock)); ++ ++	if (rv) ++		kfree(rcvr); ++ ++	return rv; ++} ++ ++int ipmi_unregister_for_cmd(ipmi_user_t   user, ++			    unsigned char netfn, ++			    unsigned char cmd) ++{ ++	struct list_head *entry; ++	unsigned long    flags; ++	struct cmd_rcvr  *rcvr; ++	int              rv = -ENOENT; ++ ++	read_lock(&(user->intf->users_lock)); ++	write_lock_irqsave(&(user->intf->cmd_rcvr_lock), flags); ++	/* Make sure the command/netfn is not already registered. */ ++	list_for_each(entry, &(user->intf->cmd_rcvrs)) { ++		rcvr = list_entry(entry, struct cmd_rcvr, link); ++		if ((rcvr->netfn == netfn) || (rcvr->cmd == cmd)) { ++			rv = 0; ++			list_del(entry); ++			kfree(rcvr); ++			break; ++		} ++	} ++	write_unlock_irqrestore(&(user->intf->cmd_rcvr_lock), flags); ++	read_unlock(&(user->intf->users_lock)); ++ ++	return rv; ++} ++ ++static unsigned char ++ipmb_checksum(unsigned char *data, int size) ++{ ++	unsigned char csum = 0; ++	 ++	for (; size > 0; size--, data++) ++		csum += *data; ++ ++	return -csum; ++} ++ ++/* Separate from ipmi_request so that the user does not have to be ++   supplied in certain circumstances (mainly at panic time).  If ++   messages are supplied, they will be freed, even if an error ++   occurs. */ ++static inline int i_ipmi_request(ipmi_user_t          user, ++				 ipmi_smi_t           intf, ++				 struct ipmi_addr     *addr, ++				 long                 msgid, ++				 struct ipmi_msg      *msg, ++				 void                 *supplied_smi, ++				 struct ipmi_recv_msg *supplied_recv, ++				 int                  priority, ++				 unsigned char        source_address, ++				 unsigned char        source_lun) ++{ ++	int                  rv = 0; ++	struct ipmi_smi_msg  *smi_msg; ++	struct ipmi_recv_msg *recv_msg; ++ ++ ++	if (supplied_recv) { ++		recv_msg = supplied_recv; ++	} else { ++		recv_msg = ipmi_alloc_recv_msg(); ++		if (recv_msg == NULL) { ++			return -ENOMEM; ++		} ++	} ++ ++	if (supplied_smi) { ++		smi_msg = (struct ipmi_smi_msg *) supplied_smi; ++	} else { ++		smi_msg = ipmi_alloc_smi_msg(); ++		if (smi_msg == NULL) { ++			ipmi_free_recv_msg(recv_msg); ++			return -ENOMEM; ++		} ++	} ++ ++	if (addr->channel > IPMI_NUM_CHANNELS) { ++	    rv = -EINVAL; ++	    goto out_err; ++	} ++ ++	if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) { ++		struct ipmi_system_interface_addr *smi_addr; ++ ++		smi_addr = (struct ipmi_system_interface_addr *) addr; ++		if (smi_addr->lun > 3) ++			return -EINVAL; ++ ++		if ((msg->netfn == IPMI_NETFN_APP_REQUEST) ++		    && ((msg->cmd == IPMI_SEND_MSG_CMD) ++			|| (msg->cmd == IPMI_GET_MSG_CMD) ++			|| (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) ++		{ ++			/* We don't let the user do these, since we manage ++			   the sequence numbers. */ ++			rv = -EINVAL; ++			goto out_err; ++		} ++ ++		if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) { ++			rv = -EMSGSIZE; ++			goto out_err; ++		} ++ ++		recv_msg->user = user; ++		recv_msg->addr = *addr; ++		recv_msg->msgid = msgid; ++		recv_msg->msg = *msg; ++ ++		smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3); ++		smi_msg->data[1] = msg->cmd; ++		smi_msg->msgid = msgid; ++		smi_msg->user_data = recv_msg; ++		if (msg->data_len > 0) ++			memcpy(&(smi_msg->data[2]), msg->data, msg->data_len); ++		smi_msg->data_size = msg->data_len + 2; ++	} else if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE) ++		   || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) ++	{ ++		struct ipmi_ipmb_addr *ipmb_addr; ++		unsigned char         ipmb_seq; ++		int                   i; ++ ++		if (addr == NULL) { ++			rv = -EINVAL; ++			goto out_err; ++		} ++ ++		if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) { ++		    /* Broadcasts add a zero at the beginning of the ++		       message, but otherwise is the same as an IPMB ++		       address. */ ++		    smi_msg->data[3] = 0; ++		    addr->addr_type = IPMI_IPMB_ADDR_TYPE; ++		    i = 1; ++		} else { ++		    i = 0; ++		} ++ ++		/* 9 for the header and 1 for the checksum, plus ++                   possibly one for the broadcast. */ ++		if ((msg->data_len + 10 + i) > IPMI_MAX_MSG_LENGTH) { ++			rv = -EMSGSIZE; ++			goto out_err; ++		} ++ ++		ipmb_addr = (struct ipmi_ipmb_addr *) addr; ++		if (ipmb_addr->lun > 3) ++			return -EINVAL; ++ ++		memcpy(&(recv_msg->addr), ipmb_addr, sizeof(*ipmb_addr)); ++ ++		recv_msg->user = user; ++		recv_msg->msgid = msgid; ++		recv_msg->msg = *msg; ++ ++		if (recv_msg->msg.netfn & 0x1) { ++			/* It's a response, so use the user's sequence. */ ++			ipmb_seq = msgid; ++		} else { ++			/* It's a command, so get a sequence for it. */ ++			/* Create a sequence number with a 5 second timeout. */ ++			/* FIXME - magic number for the timeout. */ ++			rv = intf_next_seq(intf, ++					   recv_msg, ++					   5000, ++					   &ipmb_seq); ++			if (rv) { ++				/* We have used up all the sequence numbers, ++				   probably, so abort. */ ++				ipmi_free_recv_msg(recv_msg); ++				smi_msg->done(smi_msg); ++				goto out_err; ++			} ++		} ++ ++		/* Format the IPMB header data. */ ++		smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); ++		smi_msg->data[1] = IPMI_SEND_MSG_CMD; ++		smi_msg->data[2] = addr->channel; ++		smi_msg->data[i+3] = ipmb_addr->slave_addr; ++		smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3); ++		smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2); ++		smi_msg->data[i+6] = source_address; ++		smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun; ++		smi_msg->data[i+8] = msg->cmd; ++ ++		/* Now tack on the data to the message. */ ++		if (msg->data_len > 0) ++			memcpy(&(smi_msg->data[i+9]), msg->data, msg->data_len); ++		smi_msg->data_size = msg->data_len + 9; ++ ++		/* Now calculate the checksum and tack it on. */ ++		smi_msg->data[i+smi_msg->data_size] ++		    = ipmb_checksum(&(smi_msg->data[i+6]), smi_msg->data_size-6); ++ ++		/* Add on the checksum size and the offset from the ++                   broadcast. */ ++		smi_msg->data_size += 1 + i; ++		 ++		smi_msg->msgid = msgid; ++	} else { ++	    /* Unknown address type. */ ++	    rv = -EINVAL; ++	    goto out_err; ++	} ++ ++	intf->handlers->sender(intf->send_info, smi_msg, priority); ++ ++	return 0; ++ ++ out_err: ++	smi_msg->done(smi_msg); ++	recv_msg->done(recv_msg); ++	return rv; ++} ++ ++int ipmi_request(ipmi_user_t      user, ++		 struct ipmi_addr *addr, ++		 long             msgid, ++		 struct ipmi_msg  *msg, ++		 int              priority) ++{ ++	return i_ipmi_request(user, ++			      user->intf, ++			      addr, ++			      msgid, ++			      msg, ++			      NULL, NULL, ++			      priority, ++			      user->intf->my_address, ++			      user->intf->my_lun); ++} ++ ++int ipmi_request_supply_msgs(ipmi_user_t          user, ++			     struct ipmi_addr     *addr, ++			     long                 msgid, ++			     struct ipmi_msg      *msg, ++			     void                 *supplied_smi, ++			     struct ipmi_recv_msg *supplied_recv, ++			     int                  priority) ++{ ++	return i_ipmi_request(user, ++			      user->intf, ++			      addr, ++			      msgid, ++			      msg, ++			      supplied_smi, ++			      supplied_recv, ++			      priority, ++			      user->intf->my_address, ++			      user->intf->my_lun); ++} ++ ++int ipmi_request_with_source(ipmi_user_t      user, ++			     struct ipmi_addr *addr, ++			     long             msgid, ++			     struct ipmi_msg  *msg, ++			     int              priority, ++			     unsigned char    source_address, ++			     unsigned char    source_lun) ++{ ++	return i_ipmi_request(user, ++			      user->intf, ++			      addr, ++			      msgid, ++			      msg, ++			      NULL, NULL, ++			      priority, ++			      source_address, ++			      source_lun); ++} ++ ++int ipmi_register_smi(struct ipmi_smi_handlers *handlers, ++		      void		       *send_info, ++		      unsigned char            version_major, ++		      unsigned char            version_minor, ++		      ipmi_smi_t               *intf) ++{ ++	int              i, j; ++	int              rv; ++	unsigned long    flags; ++	ipmi_smi_t       new_intf; ++	struct list_head *entry; ++ ++ ++	/* Make sure the driver is actually initialized, this handles ++	   problems with initialization order. */ ++	if (!initialized) { ++		rv = ipmi_init_msghandler(); ++		if (rv) ++			return rv; ++		/* The init code doesn't return an error if it was turned ++		   off, but it won't initialize.  Check that. */ ++		if (!initialized) ++			return -ENODEV; ++	} ++ ++	new_intf = kmalloc(sizeof(*new_intf), GFP_KERNEL); ++	if (!new_intf) ++		return -ENOMEM; ++ ++	rv = -ENOMEM; ++ ++	spin_lock_irqsave(&interfaces_outside_lock, flags); ++	write_lock(&interfaces_lock); ++	for (i=0; i<MAX_IPMI_INTERFACES; i++) { ++		if (ipmi_interfaces[i] == NULL) { ++			new_intf->version_major = version_major; ++			new_intf->version_minor = version_minor; ++			new_intf->my_address = IPMI_BMC_SLAVE_ADDR; ++			new_intf->my_lun = 2;  /* the SMS LUN. */ ++			rwlock_init(&(new_intf->users_lock)); ++			INIT_LIST_HEAD(&(new_intf->users)); ++			new_intf->handlers = handlers; ++			new_intf->send_info = send_info; ++			spin_lock_init(&(new_intf->seq_lock)); ++			for (j=0; j<IPMI_IPMB_NUM_SEQ; j++) ++			    new_intf->seq_table[j].inuse = 0; ++			new_intf->curr_seq = 0; ++			spin_lock_init(&(new_intf->waiting_msgs_lock)); ++			INIT_LIST_HEAD(&(new_intf->waiting_msgs)); ++			spin_lock_init(&(new_intf->events_lock)); ++			INIT_LIST_HEAD(&(new_intf->waiting_events)); ++			new_intf->waiting_events_count = 0; ++			rwlock_init(&(new_intf->cmd_rcvr_lock)); ++			INIT_LIST_HEAD(&(new_intf->cmd_rcvrs)); ++			new_intf->all_cmd_rcvr = NULL; ++			MOD_INC_USE_COUNT; ++ ++			ipmi_interfaces[i] = new_intf; ++ ++			rv = 0; ++			*intf = new_intf; ++			break; ++		} ++	} ++ ++	/* This unusual lock combination allows us to convert the ++	   interfaces lock to a read lock atomically.  This way, we ++	   can call the callbacks with the new interface without ++	   having to worry about the interface going away, but still ++	   letting them register and unregister users. */ ++	write_unlock(&interfaces_lock); ++	read_lock(&interfaces_lock); ++	spin_unlock_irqrestore(&interfaces_outside_lock, flags); ++ ++	if (rv == 0) { ++		/* Call all the watcher interfaces to tell them that a ++		   new interface is available. */ ++		read_lock(&smi_watcher_lock); ++		list_for_each(entry, &smi_watchers) { ++			struct ipmi_smi_watcher *w; ++			w = list_entry(entry, struct ipmi_smi_watcher, link); ++			w->new_smi(i); ++		} ++		read_unlock(&smi_watcher_lock); ++	} ++ ++	read_unlock(&interfaces_lock); ++ ++	if (rv) ++		kfree(new_intf); ++ ++	return rv; ++} ++ ++static void free_recv_msg_list(struct list_head *q) ++{ ++	struct list_head     *entry, *entry2; ++	struct ipmi_recv_msg *msg; ++ ++	list_for_each_safe(entry, entry2, q) { ++		msg = list_entry(entry, struct ipmi_recv_msg, link); ++		list_del(entry); ++		ipmi_free_recv_msg(msg); ++	} ++} ++ ++static void free_cmd_rcvr_list(struct list_head *q) ++{ ++	struct list_head *entry, *entry2; ++	struct cmd_rcvr  *rcvr; ++ ++	list_for_each_safe(entry, entry2, q) { ++		rcvr = list_entry(entry, struct cmd_rcvr, link); ++		list_del(entry); ++		kfree(rcvr); ++	} ++} ++ ++static void clean_up_interface_data(ipmi_smi_t intf) ++{ ++	int i; ++ ++	free_recv_msg_list(&(intf->waiting_msgs)); ++	free_recv_msg_list(&(intf->waiting_events)); ++	free_cmd_rcvr_list(&(intf->cmd_rcvrs)); ++ ++	for (i=0; i<IPMI_IPMB_NUM_SEQ; i++) { ++		if ((intf->seq_table[i].inuse) ++		    && (intf->seq_table[i].recv_msg)) ++		{ ++			ipmi_free_recv_msg(intf->seq_table[i].recv_msg); ++		}	 ++	} ++} ++ ++int ipmi_unregister_smi(ipmi_smi_t intf) ++{ ++	int              rv = -ENODEV; ++	unsigned long    flags; ++	int              i; ++	struct list_head *entry; ++ ++	spin_lock_irqsave(&interfaces_outside_lock, flags); ++	write_lock(&interfaces_lock); ++ ++	write_lock(&(intf->users_lock)); ++	if (list_empty(&(intf->users))) ++	{ ++		for (i=0; i<MAX_IPMI_INTERFACES; i++) { ++			if (ipmi_interfaces[i] == intf) { ++				clean_up_interface_data(intf); ++				ipmi_interfaces[i] = NULL; ++				write_unlock(&(intf->users_lock)); ++				kfree(intf); ++				MOD_DEC_USE_COUNT; ++				rv = 0; ++				goto out_call_watcher; ++			} ++		} ++	} else { ++		rv = -EBUSY; ++	} ++	write_unlock(&(intf->users_lock)); ++	spin_unlock_irqrestore(&interfaces_outside_lock, flags); ++ ++	return rv; ++ ++ out_call_watcher: ++	/* This unusual lock combination allows us to convert the ++	   interfaces lock to a read lock atomically.  This way, we ++	   can call the callbacks with the new interface without ++	   having to worry about the interface going away, but still ++	   letting them register and unregister users. */ ++	write_unlock(&interfaces_lock); ++	read_lock(&interfaces_lock); ++	spin_unlock_irqrestore(&interfaces_outside_lock, flags); ++ ++	/* Call all the watcher interfaces to tell them that ++	   an interface is gone. */ ++	read_lock(&smi_watcher_lock); ++	list_for_each(entry, &smi_watchers) { ++		struct ipmi_smi_watcher *w; ++		w = list_entry(entry, ++			       struct ipmi_smi_watcher, ++			       link); ++		w->smi_gone(i); ++	} ++	read_unlock(&smi_watcher_lock); ++	read_unlock(&interfaces_lock); ++	return 0; ++} ++ ++static int handle_get_msg_rsp(ipmi_smi_t          intf, ++			      struct ipmi_smi_msg *msg) ++{ ++	struct ipmi_ipmb_addr ipmb_addr; ++	struct ipmi_recv_msg  *recv_msg; ++ ++	 ++	if (msg->rsp[2] != 0) { ++		/* An error getting the response, just ignore it. */ ++		return 0; ++	} ++ ++	ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE; ++	ipmb_addr.slave_addr = msg->rsp[6]; ++	ipmb_addr.lun = msg->rsp[7] & 3; ++ ++	/* It's a response from a remote entity.  Look up the sequence ++	   number and handle the response. */ ++	if (intf_find_seq(intf, ++			  msg->rsp[7] >> 2, ++			  msg->rsp[3], ++			  msg->rsp[8], ++			  (msg->rsp[4] >> 2) & (~1), ++			  (struct ipmi_addr *) &(ipmb_addr), ++			  &recv_msg)) ++	{ ++		/* We were unable to find the sequence number, ++		   so just nuke the message. */ ++		return 0; ++	} ++ ++	memcpy(recv_msg->msg_data, ++	       &(msg->rsp[9]), ++	       msg->rsp_size - 9); ++	/* THe other fields matched, so no need to set them, except ++           for netfn, which needs to be the response that was ++           returned, not the request value. */ ++	recv_msg->msg.netfn = msg->rsp[4] >> 2; ++	recv_msg->msg.data = recv_msg->msg_data; ++	recv_msg->msg.data_len = msg->rsp_size - 9; ++	recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; ++	deliver_response(recv_msg); ++ ++	return 0; ++} ++ ++static int handle_get_msg_cmd(ipmi_smi_t          intf, ++			      struct ipmi_smi_msg *msg) ++{ ++	struct list_head *entry; ++	struct cmd_rcvr       *rcvr; ++	int              rv = 0; ++	unsigned char    netfn; ++	unsigned char    cmd; ++	ipmi_user_t      user = NULL; ++	struct ipmi_ipmb_addr *ipmb_addr; ++	struct ipmi_recv_msg  *recv_msg; ++ ++	if (msg->rsp[2] != 0) { ++		/* An error getting the response, just ignore it. */ ++		return 0; ++	} ++ ++	netfn = msg->rsp[4] >> 2; ++	cmd = msg->rsp[8]; ++ ++	read_lock(&(intf->cmd_rcvr_lock)); ++	 ++	if (intf->all_cmd_rcvr) { ++		user = intf->all_cmd_rcvr; ++	} else { ++		/* Find the command/netfn. */ ++		list_for_each(entry, &(intf->cmd_rcvrs)) { ++			rcvr = list_entry(entry, struct cmd_rcvr, link); ++			if ((rcvr->netfn == netfn) || (rcvr->cmd == cmd)) { ++				user = rcvr->user; ++				break; ++			} ++		} ++	} ++	read_unlock(&(intf->cmd_rcvr_lock)); ++ ++	if (user == NULL) { ++		/* We didn't find a user, deliver an error response. */ ++		msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2); ++		msg->data[1] = IPMI_SEND_MSG_CMD; ++		msg->data[2] = msg->rsp[3]; ++		msg->data[3] = msg->rsp[6]; ++		msg->data[4] = msg->rsp[4]; ++		msg->data[5] = ipmb_checksum(&(msg->data[3]), 2); ++		msg->data[6] = intf->my_address; ++		msg->data[7] = msg->rsp[7]; /* rqseq/lun */ ++		msg->data[8] = msg->rsp[8]; /* cmd */ ++		msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE; ++		msg->data[10] = ipmb_checksum(&(msg->data[6]), 4); ++		msg->data_size = 11; ++ ++		intf->handlers->sender(intf->send_info, msg, 0); ++ ++		rv = -1; /* We used the message, so return the value that ++			    causes it to not be freed or queued. */ ++	} else { ++		/* Deliver the message to the user. */ ++		recv_msg = ipmi_alloc_recv_msg(); ++		if (! recv_msg) { ++			/* We couldn't allocate memory for the ++                           message, so requeue it for handling ++                           later. */ ++			rv = 1; ++		} else { ++			ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr; ++			ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE; ++			ipmb_addr->slave_addr = msg->rsp[6]; ++			ipmb_addr->lun = msg->rsp[7] & 3; ++			ipmb_addr->channel = msg->rsp[3]; ++ ++			recv_msg->user = user; ++			recv_msg->recv_type = IPMI_CMD_RECV_TYPE; ++			recv_msg->msgid = msg->rsp[7] >> 2; ++			recv_msg->msg.netfn = msg->rsp[4] >> 2; ++			recv_msg->msg.cmd = msg->rsp[8]; ++			recv_msg->msg.data = recv_msg->msg_data; ++			recv_msg->msg.data_len = msg->rsp_size - 9; ++			memcpy(recv_msg->msg_data, ++			       &(msg->rsp[9]), ++			       msg->rsp_size - 9); ++			deliver_response(recv_msg); ++		} ++	} ++ ++	return rv; ++} ++ ++static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg, ++				     struct ipmi_smi_msg  *msg) ++{ ++	struct ipmi_system_interface_addr *smi_addr; ++	 ++	recv_msg->msgid = 0; ++	smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr); ++	smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; ++	smi_addr->channel = IPMI_BMC_CHANNEL; ++	smi_addr->lun = msg->rsp[0] & 3; ++	recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE; ++	recv_msg->msg.netfn = msg->rsp[0] >> 2; ++	recv_msg->msg.cmd = msg->rsp[1]; ++	memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3); ++	recv_msg->msg.data = recv_msg->msg_data; ++	recv_msg->msg.data_len = msg->rsp_size - 3; ++} ++ ++/* This will be called with the intf->users_lock read-locked, so no need ++   to do that here. */ ++static int handle_read_event_rsp(ipmi_smi_t          intf, ++				 struct ipmi_smi_msg *msg) ++{ ++	struct ipmi_recv_msg *recv_msg; ++	struct list_head     msgs; ++	struct list_head     *entry, *entry2; ++	ipmi_user_t          user; ++	int                  rv = 0; ++	int                  deliver_count = 0; ++	unsigned long        flags; ++ ++	if (msg->rsp_size < 19) { ++		/* Message is too small to be an IPMB event. */ ++		return 0; ++	} ++ ++	if (msg->rsp[2] != 0) { ++		/* An error getting the event, just ignore it. */ ++		return 0; ++	} ++ ++	INIT_LIST_HEAD(&msgs); ++ ++	spin_lock_irqsave(&(intf->events_lock), flags); ++ ++	/* Allocate and fill in one message for every user that is getting ++	   events. */ ++	list_for_each(entry, &(intf->users)) { ++		user = list_entry(entry, struct ipmi_user, link); ++ ++		if (! user->gets_events) ++			continue; ++ ++		recv_msg = ipmi_alloc_recv_msg(); ++		if (! recv_msg) { ++			list_for_each_safe(entry, entry2, &msgs) { ++				recv_msg = list_entry(entry, ++						      struct ipmi_recv_msg, ++						      link); ++				list_del(entry); ++				ipmi_free_recv_msg(recv_msg); ++			} ++			/* We couldn't allocate memory for the ++                           message, so requeue it for handling ++                           later. */ ++			rv = 1; ++			goto out; ++		} ++ ++		deliver_count++; ++ ++		copy_event_into_recv_msg(recv_msg, msg); ++		recv_msg->user = user; ++		list_add_tail(&(recv_msg->link), &msgs); ++	} ++ ++	if (deliver_count) { ++		/* Now deliver all the messages. */ ++		list_for_each_safe(entry, entry2, &msgs) { ++			recv_msg = list_entry(entry, ++					      struct ipmi_recv_msg, ++					      link); ++			list_del(entry); ++			deliver_response(recv_msg); ++		} ++	} else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) { ++		/* No one to receive the message, put it in queue if there's ++		   not already too many things in the queue. */ ++		recv_msg = ipmi_alloc_recv_msg(); ++		if (! recv_msg) { ++			/* We couldn't allocate memory for the ++                           message, so requeue it for handling ++                           later. */ ++			rv = 1; ++			goto out; ++		} ++ ++		copy_event_into_recv_msg(recv_msg, msg); ++		list_add_tail(&(recv_msg->link), &(intf->waiting_events)); ++	} else { ++		/* There's too many things in the queue, discard this ++		   message. */ ++		printk(KERN_WARNING "ipmi: Event queue full, discarding an" ++		       " incoming event\n"); ++	} ++ ++ out: ++	spin_unlock_irqrestore(&(intf->events_lock), flags); ++ ++	return rv; ++} ++ ++static int handle_bmc_rsp(ipmi_smi_t          intf, ++			  struct ipmi_smi_msg *msg) ++{ ++	struct ipmi_recv_msg *recv_msg; ++	int                  found = 0; ++	struct list_head     *entry; ++ ++	recv_msg = (struct ipmi_recv_msg *) msg->user_data; ++ ++	/* Make sure the user still exists. */ ++	list_for_each(entry, &(intf->users)) { ++		if (list_entry(entry, struct ipmi_user, link) ++		    == recv_msg->user) ++		{ ++			/* Found it, so we can deliver it */ ++			found = 1; ++			break; ++		} ++	} ++ ++	if (!found) { ++		/* The user for the message went away, so give up. */ ++		ipmi_free_recv_msg(recv_msg); ++	} else { ++		struct ipmi_system_interface_addr *smi_addr; ++ ++		recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE; ++		recv_msg->msgid = msg->msgid; ++		smi_addr = ((struct ipmi_system_interface_addr *) ++			    &(recv_msg->addr)); ++		smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; ++		smi_addr->channel = IPMI_BMC_CHANNEL; ++		smi_addr->lun = msg->rsp[0] & 3; ++		recv_msg->msg.netfn = msg->rsp[0] >> 2; ++		recv_msg->msg.cmd = msg->rsp[1]; ++		memcpy(recv_msg->msg_data, ++		       &(msg->rsp[2]), ++		       msg->rsp_size - 2); ++		recv_msg->msg.data = recv_msg->msg_data; ++		recv_msg->msg.data_len = msg->rsp_size - 2; ++		deliver_response(recv_msg); ++	} ++ ++	return 0; ++} ++ ++/* Handle a new message.  Return 1 if the message should be requeued, ++   0 if the message should be freed, or -1 if the message should not ++   be freed or requeued. */ ++static int handle_new_recv_msg(ipmi_smi_t          intf, ++			       struct ipmi_smi_msg *msg) ++{ ++	int requeue; ++ ++	if (msg->rsp_size < 2) { ++		/* Message is too small to be correct. */ ++		requeue = 0; ++	} else if (msg->rsp[1] == IPMI_GET_MSG_CMD) { ++		/* It's from the receive queue. */ ++		if (msg->rsp_size < 11) { ++			/* It's too small to be valid, just ignore it. */ ++			requeue = 0; ++		} else if (msg->rsp[4] & 0x04) { ++			/* It's a response, so find the requesting message ++			   and send it up. */ ++			requeue = handle_get_msg_rsp(intf, msg); ++		} else { ++			/* It's a command to the SMS from some other ++			   entity.  Handle that. */ ++			requeue = handle_get_msg_cmd(intf, msg); ++		} ++	} else if (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD) { ++		/* It's an asyncronous event. */ ++		requeue = handle_read_event_rsp(intf, msg); ++	} else { ++		/* It's a response from the local BMC. */ ++		requeue = handle_bmc_rsp(intf, msg); ++	} ++ ++	return requeue; ++} ++ ++/* Handle a new message from the lower layer. */ ++void ipmi_smi_msg_received(ipmi_smi_t          intf, ++			   struct ipmi_smi_msg *msg) ++{ ++	unsigned long flags; ++	int           rv; ++ ++ ++	if ((msg->data_size >= 2) && (msg->data[1] == IPMI_SEND_MSG_CMD)) { ++		/* This is the local response to a send, we just ++                   ignore these. */ ++		msg->done(msg); ++		return; ++	} ++ ++	/* Lock the user lock so the user can't go away while we are ++	   working on it. */ ++	read_lock(&(intf->users_lock)); ++ ++	/* To preserve message order, if the list is not empty, we ++           tack this message onto the end of the list. */ ++	spin_lock_irqsave(&(intf->waiting_msgs_lock), flags); ++	if (!list_empty(&(intf->waiting_msgs))) { ++		list_add_tail(&(msg->link), &(intf->waiting_msgs)); ++		spin_unlock(&(intf->waiting_msgs_lock)); ++		return; ++	} ++	spin_unlock_irqrestore(&(intf->waiting_msgs_lock), flags); ++		 ++	rv = handle_new_recv_msg(intf, msg); ++	if (rv > 0) { ++		/* Could not handle the message now, just add it to a ++                   list to handle later. */ ++		spin_lock(&(intf->waiting_msgs_lock)); ++		list_add_tail(&(msg->link), &(intf->waiting_msgs)); ++		spin_unlock(&(intf->waiting_msgs_lock)); ++	} else if (rv == 0) { ++		msg->done(msg); ++	} ++ ++	read_unlock(&(intf->users_lock)); ++} ++ ++void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf) ++{ ++	struct list_head *entry; ++	ipmi_user_t      user; ++ ++	read_lock(&(intf->users_lock)); ++	list_for_each(entry, &(intf->users)) { ++		user = list_entry(entry, struct ipmi_user, link); ++ ++		if (! user->handler->ipmi_watchdog_pretimeout) ++			continue; ++ ++		user->handler->ipmi_watchdog_pretimeout(user->handler_data); ++	} ++	read_unlock(&(intf->users_lock)); ++} ++ ++static void ++handle_msg_timeout(struct ipmi_recv_msg *msg) ++{ ++	msg->recv_type = IPMI_RESPONSE_RECV_TYPE; ++	msg->msg_data[0] = IPMI_TIMEOUT_COMPLETION_CODE; ++	msg->msg.netfn |= 1; /* Convert to a response. */ ++	msg->msg.data_len = 1; ++	msg->msg.data = msg->msg_data; ++	deliver_response(msg); ++} ++ ++static void ++ipmi_timeout_handler(long timeout_period) ++{ ++	ipmi_smi_t           intf; ++	struct list_head     timeouts; ++	struct ipmi_recv_msg *msg; ++	struct ipmi_smi_msg  *smi_msg; ++	unsigned long        flags; ++	struct list_head     *entry, *entry2; ++	int                  i, j; ++ ++	INIT_LIST_HEAD(&timeouts); ++ ++	read_lock(&interfaces_lock); ++	for (i=0; i<MAX_IPMI_INTERFACES; i++) { ++		intf = ipmi_interfaces[i]; ++		if (intf == NULL) ++			continue; ++ ++		read_lock(&(intf->users_lock)); ++ ++		/* See if any waiting messages need to be processed. */ ++		spin_lock_irqsave(&(intf->waiting_msgs_lock), flags); ++		list_for_each_safe(entry, entry2, &(intf->waiting_msgs)) { ++			smi_msg = list_entry(entry, struct ipmi_smi_msg, link); ++			if (! handle_new_recv_msg(intf, smi_msg)) { ++				list_del(entry); ++				smi_msg->done(smi_msg); ++			} else { ++				/* To preserve message order, quit if we ++				   can't handle a message. */ ++				break; ++			} ++		} ++		spin_unlock_irqrestore(&(intf->waiting_msgs_lock), flags); ++ ++		/* Go through the seq table and find any messages that ++		   have timed out, putting them in the timeouts ++		   list. */ ++		spin_lock_irqsave(&(intf->seq_lock), flags); ++		for (j=0; j<IPMI_IPMB_NUM_SEQ; j++) { ++			if (intf->seq_table[j].inuse) { ++				intf->seq_table[j].timeout -= timeout_period; ++				if (intf->seq_table[j].timeout <= 0) { ++					intf->seq_table[j].inuse = 0; ++					msg = intf->seq_table[j].recv_msg; ++					list_add_tail(&(msg->link), &timeouts); ++				} ++			} ++		} ++		spin_unlock_irqrestore(&(intf->seq_lock), flags); ++ ++		list_for_each_safe(entry, entry2, &timeouts) { ++			msg = list_entry(entry, struct ipmi_recv_msg, link); ++			handle_msg_timeout(msg); ++		} ++ ++		read_unlock(&(intf->users_lock)); ++	} ++ ++	read_unlock(&interfaces_lock); ++} ++ ++static void ipmi_request_event(void) ++{ ++	ipmi_smi_t intf; ++	int        i; ++ ++	read_lock(&interfaces_lock); ++ ++	for (i=0; i<MAX_IPMI_INTERFACES; i++) { ++		intf = ipmi_interfaces[i]; ++		if (intf == NULL) ++			continue; ++ ++		intf->handlers->request_events(intf->send_info); ++	} ++	 ++	read_unlock(&interfaces_lock); ++} ++ ++static struct timer_list ipmi_timer; ++ ++/* Call every 100 ms. */ ++#define IPMI_TIMEOUT_TIME	100 ++#define IPMI_TIMEOUT_JIFFIES	(IPMI_TIMEOUT_TIME/(1000/HZ)) ++ ++/* Request events from the queue every second.  Hopefully, in the ++   future, IPMI will add a way to know immediately if an event is ++   in the queue. */ ++#define IPMI_REQUEST_EV_TIME	(1000 / (IPMI_TIMEOUT_TIME)) ++ ++static volatile int stop_operation = 0; ++static volatile int timer_stopped = 0; ++static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME; ++ ++static void ipmi_timeout(unsigned long data) ++{ ++	if (stop_operation) { ++		timer_stopped = 1; ++		return; ++	} ++ ++	ticks_to_req_ev--; ++	if (ticks_to_req_ev == 0) { ++		ipmi_request_event(); ++		ticks_to_req_ev = IPMI_REQUEST_EV_TIME; ++	} ++ ++	ipmi_timeout_handler(IPMI_TIMEOUT_TIME); ++ ++	ipmi_timer.expires += IPMI_TIMEOUT_JIFFIES; ++	add_timer(&ipmi_timer); ++} ++ ++ ++/* FIXME - convert these to slabs. */ ++static void free_smi_msg(struct ipmi_smi_msg *msg) ++{ ++	kfree(msg); ++} ++ ++struct ipmi_smi_msg *ipmi_alloc_smi_msg(void) ++{ ++	struct ipmi_smi_msg *rv; ++	rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC); ++	if (rv) ++		rv->done = free_smi_msg; ++	return rv; ++} ++ ++static void free_recv_msg(struct ipmi_recv_msg *msg) ++{ ++	kfree(msg); ++} ++ ++struct ipmi_recv_msg *ipmi_alloc_recv_msg(void) ++{ ++	struct ipmi_recv_msg *rv; ++ ++	rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC); ++	if (rv) ++		rv->done = free_recv_msg; ++	return rv; ++} ++ ++#ifdef CONFIG_IPMI_PANIC_EVENT ++ ++static void dummy_smi_done_handler(struct ipmi_smi_msg *msg) ++{ ++} ++ ++static void dummy_recv_done_handler(struct ipmi_recv_msg *msg) ++{ ++} ++ ++static void send_panic_events(void) ++{ ++	struct ipmi_msg                   msg; ++	ipmi_smi_t                        intf; ++	unsigned char                     data[8]; ++	int                               i; ++	struct ipmi_system_interface_addr addr; ++	struct ipmi_smi_msg               smi_msg; ++	struct ipmi_recv_msg              recv_msg; ++ ++	addr.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; ++	addr.channel = IPMI_BMC_CHANNEL; ++ ++	/* Fill in an event telling that we have failed. */ ++	msg.netfn = 0x04; /* Sensor or Event. */ ++	msg.cmd = 2; /* Platform event command. */ ++	msg.data = data; ++	msg.data_len = 8; ++	data[0] = 0x21; /* Kernel generator ID, IPMI table 5-4 */ ++	data[1] = 0x03; /* This is for IPMI 1.0. */ ++	data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */ ++	data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */ ++	data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */ ++ ++	/* These used to have the first three bytes of the panic string, ++	   but not only is that not terribly useful, it's not available ++	   any more. */ ++	data[3] = 0; ++	data[6] = 0; ++	data[7] = 0; ++ ++	smi_msg.done = dummy_smi_done_handler; ++	recv_msg.done = dummy_recv_done_handler; ++ ++	/* For every registered interface, send the event. */ ++	for (i=0; i<MAX_IPMI_INTERFACES; i++) { ++		intf = ipmi_interfaces[i]; ++		if (intf == NULL) ++			continue; ++ ++		intf->handlers->set_run_to_completion(intf->send_info, 1); ++		i_ipmi_request(NULL, ++			       intf, ++			       (struct ipmi_addr *) &addr, ++			       0, ++			       &msg, ++			       &smi_msg, ++			       &recv_msg, ++			       0, ++			       intf->my_address, ++			       intf->my_lun); ++	} ++} ++#endif /* CONFIG_IPMI_PANIC_EVENT */ ++ ++static int has_paniced = 0; ++ ++static int panic_event(struct notifier_block *this, ++		       unsigned long         event, ++                       void                  *ptr) ++{ ++	int        i; ++	ipmi_smi_t intf; ++ ++	if (has_paniced) ++		return NOTIFY_DONE; ++	has_paniced = 1; ++ ++	/* For every registered interface, set it to run to completion. */ ++	for (i=0; i<MAX_IPMI_INTERFACES; i++) { ++		intf = ipmi_interfaces[i]; ++		if (intf == NULL) ++			continue; ++ ++		intf->handlers->set_run_to_completion(intf->send_info, 1); ++	} ++ ++#ifdef CONFIG_IPMI_PANIC_EVENT ++	send_panic_events(); ++#endif ++ ++	return NOTIFY_DONE; ++} ++ ++static struct notifier_block panic_block = { ++	panic_event, ++	NULL, ++	200   /* priority: INT_MAX >= x >= 0 */ ++}; ++ ++ ++static int ipmi_init_msghandler(void) ++{ ++	int i; ++ ++	if (initialized) ++		return 0; ++ ++	for (i=0; i<MAX_IPMI_INTERFACES; i++) { ++		ipmi_interfaces[i] = NULL; ++	} ++ ++	init_timer(&ipmi_timer); ++	ipmi_timer.data = 0; ++	ipmi_timer.function = ipmi_timeout; ++	ipmi_timer.expires = jiffies + IPMI_TIMEOUT_JIFFIES; ++	add_timer(&ipmi_timer); ++ ++	notifier_chain_register(&panic_notifier_list, &panic_block); ++ ++	initialized = 1; ++ ++	printk(KERN_INFO "ipmi: message handler initialized\n"); ++ ++	return 0; ++} ++ ++static __exit void cleanup_ipmi(void) ++{ ++	if (!initialized) ++		return; ++ ++	notifier_chain_unregister(&panic_notifier_list, &panic_block); ++ ++	/* This can't be called if any interfaces exist, so no worry about ++	   shutting down the interfaces. */ ++ ++	/* Tell the timer to stop, then wait for it to stop.  This avoids ++	   problems with race conditions removing the timer here. */ ++	stop_operation = 1; ++	while (!timer_stopped) { ++		schedule_timeout(1); ++	} ++ ++	initialized = 0; ++} ++module_exit(cleanup_ipmi); ++ ++module_init(ipmi_init_msghandler); ++MODULE_LICENSE("GPL"); ++ ++EXPORT_SYMBOL(ipmi_alloc_recv_msg); ++EXPORT_SYMBOL(ipmi_create_user); ++EXPORT_SYMBOL(ipmi_destroy_user); ++EXPORT_SYMBOL(ipmi_get_version); ++EXPORT_SYMBOL(ipmi_request); ++EXPORT_SYMBOL(ipmi_request_supply_msgs); ++EXPORT_SYMBOL(ipmi_request_with_source); ++EXPORT_SYMBOL(ipmi_register_smi); ++EXPORT_SYMBOL(ipmi_unregister_smi); ++EXPORT_SYMBOL(ipmi_register_for_cmd); ++EXPORT_SYMBOL(ipmi_unregister_for_cmd); ++EXPORT_SYMBOL(ipmi_smi_msg_received); ++EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout); ++EXPORT_SYMBOL(ipmi_alloc_smi_msg); ++EXPORT_SYMBOL(ipmi_register_all_cmd_rcvr); ++EXPORT_SYMBOL(ipmi_unregister_all_cmd_rcvr); ++EXPORT_SYMBOL(ipmi_addr_length); ++EXPORT_SYMBOL(ipmi_validate_addr); ++EXPORT_SYMBOL(ipmi_set_gets_events); ++EXPORT_SYMBOL(ipmi_addr_equal); ++EXPORT_SYMBOL(ipmi_smi_watcher_register); ++EXPORT_SYMBOL(ipmi_smi_watcher_unregister); ++EXPORT_SYMBOL(ipmi_set_my_address); ++EXPORT_SYMBOL(ipmi_get_my_address); ++EXPORT_SYMBOL(ipmi_set_my_LUN); ++EXPORT_SYMBOL(ipmi_get_my_LUN); +diff -urN linux.orig/drivers/char/ipmi/ipmi_watchdog.c linux/drivers/char/ipmi/ipmi_watchdog.c +--- linux.orig/drivers/char/ipmi/ipmi_watchdog.c	Wed Dec 31 18:00:00 1969 ++++ linux/drivers/char/ipmi/ipmi_watchdog.c	Mon Oct 28 16:34:03 2002 +@@ -0,0 +1,863 @@ ++/* ++ * ipmi_watchdog.c ++ * ++ * A watchdog timer based upon the IPMI interface. ++ * ++ * Author: MontaVista Software, Inc. ++ *         Corey Minyard <minyard@mvista.com> ++ *         source@mvista.com ++ * ++ * Copyright 2002 MontaVista Software Inc. ++ * ++ *  This program is free software; you can redistribute it and/or modify it ++ *  under the terms of the GNU General Public License as published by the ++ *  Free Software Foundation; either version 2 of the License, or (at your ++ *  option) any later version. ++ * ++ * ++ *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED ++ *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ++ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ++ *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS ++ *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ++ *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR ++ *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ++ *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ *  You should have received a copy of the GNU General Public License along ++ *  with this program; if not, write to the Free Software Foundation, Inc., ++ *  675 Mass Ave, Cambridge, MA 02139, USA. ++ */ ++ ++#include <linux/config.h> ++#include <linux/module.h> ++#include <linux/ipmi.h> ++#include <linux/ipmi_smi.h> ++#include <linux/watchdog.h> ++#include <linux/miscdevice.h> ++#include <linux/init.h> ++#include <linux/spinlock.h> ++#include <linux/errno.h> ++#include <asm/uaccess.h> ++#include <linux/notifier.h> ++#include <linux/nmi.h> ++#include <linux/reboot.h> ++ ++/* ++ * The IPMI command/response information for the watchdog timer. ++ */ ++ ++/* values for byte 1 of the set command, byte 2 of the get response. */ ++#define WDOG_DONT_LOG		(1 << 7) ++#define WDOG_DONT_STOP_ON_SET	(1 << 6) ++#define WDOG_SET_TIMER_USE(byte, use) \ ++	byte = ((byte) & 0xf8) | ((use) & 0x7) ++#define WDOG_GET_TIMER_USE(byte) ((byte) & 0x7) ++#define WDOG_TIMER_USE_BIOS_FRB2	1 ++#define WDOG_TIMER_USE_BIOS_POST	2 ++#define WDOG_TIMER_USE_OS_LOAD		3 ++#define WDOG_TIMER_USE_SMS_OS		4 ++#define WDOG_TIMER_USE_OEM		5 ++ ++/* values for byte 2 of the set command, byte 3 of the get response. */ ++#define WDOG_SET_PRETIMEOUT_ACT(byte, use) \ ++	byte = ((byte) & 0x8f) | (((use) & 0x7) << 4) ++#define WDOG_GET_PRETIMEOUT_ACT(byte) (((byte) >> 4) & 0x7) ++#define WDOG_PRETIMEOUT_NONE		0 ++#define WDOG_PRETIMEOUT_SMI		1 ++#define WDOG_PRETIMEOUT_NMI		2 ++#define WDOG_PRETIMEOUT_MSG_INT		3 ++ ++#define WDOG_SET_TIMEOUT_ACT(byte, use) \ ++	byte = ((byte) & 0xf8) | ((use) & 0x7) ++#define WDOG_GET_TIMEOUT_ACT(byte) ((byte) & 0x7) ++#define WDOG_TIMEOUT_NONE		0 ++#define WDOG_TIMEOUT_RESET		1 ++#define WDOG_TIMEOUT_POWER_DOWN		2 ++#define WDOG_TIMEOUT_POWER_CYCLE	3 ++ ++/* Byte 3 of the get command, byte 4 of the get response is the ++   pre-timeout in seconds. */ ++ ++/* Bits for setting byte 4 of the set command, byte 5 of the get response. */ ++#define WDOG_EXPIRE_CLEAR_BIOS_FRB2	(1 << 1) ++#define WDOG_EXPIRE_CLEAR_BIOS_POST	(1 << 2) ++#define WDOG_EXPIRE_CLEAR_OS_LOAD	(1 << 3) ++#define WDOG_EXPIRE_CLEAR_SMS_OS	(1 << 4) ++#define WDOG_EXPIRE_CLEAR_OEM		(1 << 5) ++ ++/* Setting/getting the watchdog timer value.  This is for bytes 5 and ++   6 (the timeout time) of the set command, and bytes 6 and 7 (the ++   timeout time) and 8 and 9 (the current countdown value) of the ++   response.  The timeout value is given in seconds (in the command it ++   is 100ms intervals). */ ++#define WDOG_SET_TIMEOUT(byte1, byte2, val) \ ++	(byte1) = (((val) * 10) & 0xff), (byte2) = (((val) * 10) >> 8) ++#define WDOG_GET_TIMEOUT(byte1, byte2) \ ++	(((byte1) | ((byte2) << 8)) / 10) ++ ++#define IPMI_WDOG_RESET_TIMER		0x22 ++#define IPMI_WDOG_SET_TIMER		0x24 ++#define IPMI_WDOG_GET_TIMER		0x25 ++ ++/* These are here until the real ones get into the watchdog.h interface. */ ++#ifndef WDIOC_GETTIMEOUT ++#define	WDIOC_GETTIMEOUT        _IOW(WATCHDOG_IOCTL_BASE, 20, int) ++#endif ++#ifndef WDIOC_SET_PRETIMEOUT ++#define	WDIOC_SET_PRETIMEOUT     _IOW(WATCHDOG_IOCTL_BASE, 21, int) ++#endif ++#ifndef WDIOC_GET_PRETIMEOUT ++#define	WDIOC_GET_PRETIMEOUT     _IOW(WATCHDOG_IOCTL_BASE, 22, int) ++#endif ++ ++static ipmi_user_t watchdog_user = NULL; ++ ++/* Default the timeout to 10 seconds. */ ++static int timeout = 10; ++ ++/* The pre-timeout is disabled by default. */ ++static int pretimeout = 0; ++ ++/* Default action is to reset the board on a timeout. */ ++static unsigned char action_val = WDOG_TIMEOUT_RESET; ++ ++static char *action = "reset"; ++ ++static unsigned char preaction_val = WDOG_PRETIMEOUT_NONE; ++ ++static char *preaction = "none"; ++ ++MODULE_PARM(timeout, "i"); ++MODULE_PARM(pretimeout, "i"); ++MODULE_PARM(action, "s"); ++MODULE_PARM(preaction, "s"); ++ ++/* Default state of the timer. */ ++static unsigned char ipmi_watchdog_state = WDOG_TIMEOUT_NONE; ++ ++/* If shutting down via IPMI, we ignore the heartbeat. */ ++static int ipmi_ignore_heartbeat = 0; ++ ++/* Is someone using the watchdog?  Only one user is allowed. */ ++static int ipmi_wdog_open = 0; ++ ++/* If true, the driver will start running as soon as it is configured ++   and ready. */ ++static int start_now = 0; ++ ++/* If set to 1, the heartbeat command will set the state to reset and ++   start the timer.  The timer doesn't normally run when the driver is ++   first opened until the heartbeat is set the first time, this ++   variable is used to accomplish this. */ ++static int ipmi_start_timer_on_heartbeat = 0; ++ ++/* IPMI version of the BMC. */ ++static unsigned char ipmi_version_major; ++static unsigned char ipmi_version_minor; ++ ++ ++static int ipmi_heartbeat(void); ++ ++ ++/* We use a semaphore to make sure that only one thing can send a set ++   timeout at one time, because we only have one copy of the data. ++   The semaphore is claimed when the set_timeout is sent and freed ++   when both messages are free. */ ++static atomic_t set_timeout_tofree = ATOMIC_INIT(0); ++static DECLARE_MUTEX(set_timeout_lock); ++static void set_timeout_free_smi(struct ipmi_smi_msg *msg) ++{ ++    if (atomic_dec_and_test(&set_timeout_tofree)) ++	    up(&set_timeout_lock); ++} ++static void set_timeout_free_recv(struct ipmi_recv_msg *msg) ++{ ++    if (atomic_dec_and_test(&set_timeout_tofree)) ++	    up(&set_timeout_lock); ++} ++static struct ipmi_smi_msg set_timeout_smi_msg = ++{ ++	.done = set_timeout_free_smi ++}; ++static struct ipmi_recv_msg set_timeout_recv_msg = ++{ ++	.done = set_timeout_free_recv ++}; ++  ++static int ipmi_set_timeout(void) ++{ ++	struct ipmi_msg    msg; ++	unsigned char      data[6]; ++	int                rv; ++	struct ipmi_system_interface_addr addr; ++	int                send_heartbeat_now = 0; ++ ++ ++	/* We can only send one of these at a time. */ ++	down(&set_timeout_lock); ++ ++	atomic_set(&set_timeout_tofree, 2); ++ ++	data[0] = 0; ++	WDOG_SET_TIMER_USE(data[0], WDOG_TIMER_USE_SMS_OS); ++ ++	if ((ipmi_version_major > 1) ++	    || ((ipmi_version_major == 1) && (ipmi_version_minor >= 5))) ++	{ ++		/* This is an IPMI 1.5-only feature. */ ++		data[0] |= WDOG_DONT_STOP_ON_SET; ++	} else if (ipmi_watchdog_state != WDOG_TIMEOUT_NONE) { ++		/* In ipmi 1.0, setting the timer stops the watchdog, we ++		   need to start it back up again. */ ++		send_heartbeat_now = 1; ++	} ++ ++	data[1] = 0; ++	WDOG_SET_TIMEOUT_ACT(data[1], ipmi_watchdog_state); ++	if (pretimeout > 0) { ++	    WDOG_SET_PRETIMEOUT_ACT(data[1], preaction_val); ++	    data[2] = pretimeout; ++	} else { ++	    WDOG_SET_PRETIMEOUT_ACT(data[1], WDOG_PRETIMEOUT_NONE); ++	    data[2] = 0; /* No pretimeout. */ ++	} ++	data[3] = 0; ++	WDOG_SET_TIMEOUT(data[4], data[5], timeout); ++ ++	addr.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; ++	addr.channel = IPMI_BMC_CHANNEL; ++	addr.lun = 0; ++ ++	msg.netfn = 0x06; ++	msg.cmd = IPMI_WDOG_SET_TIMER; ++	msg.data = data; ++	msg.data_len = sizeof(data); ++	rv = ipmi_request_supply_msgs(watchdog_user, ++				      (struct ipmi_addr *) &addr, ++				      0, ++				      &msg, ++				      &set_timeout_smi_msg, ++				      &set_timeout_recv_msg, ++				      1); ++	if (rv) { ++		up(&set_timeout_lock); ++		printk(KERN_WARNING "IPMI Watchdog, set timeout error: %d\n", ++		       rv); ++	} else { ++		if (send_heartbeat_now) ++			rv = ipmi_heartbeat(); ++	} ++ ++	return rv; ++} ++ ++/* Do a delayed shutdown, with the delay in milliseconds.  If power_off is ++   false, do a reset.  If power_off is true, do a power down.  This is ++   primarily for the IMB code's shutdown. */ ++void ipmi_delayed_shutdown(long delay, int power_off) ++{ ++	ipmi_ignore_heartbeat = 1; ++	if (power_off)  ++		ipmi_watchdog_state = WDOG_TIMEOUT_POWER_DOWN; ++	else ++		ipmi_watchdog_state = WDOG_TIMEOUT_RESET; ++	timeout = delay; ++	ipmi_set_timeout(); ++} ++ ++/* We use a semaphore to make sure that only one thing can send a ++   heartbeat at one time, because we only have one copy of the data. ++   The semaphore is claimed when the set_timeout is sent and freed ++   when both messages are free. */ ++static atomic_t heartbeat_tofree = ATOMIC_INIT(0); ++static DECLARE_MUTEX(heartbeat_lock); ++static DECLARE_MUTEX_LOCKED(heartbeat_wait_lock); ++static void heartbeat_free_smi(struct ipmi_smi_msg *msg) ++{ ++    if (atomic_dec_and_test(&heartbeat_tofree)) ++	    up(&heartbeat_wait_lock); ++} ++static void heartbeat_free_recv(struct ipmi_recv_msg *msg) ++{ ++    if (atomic_dec_and_test(&heartbeat_tofree)) ++	    up(&heartbeat_wait_lock); ++} ++static struct ipmi_smi_msg heartbeat_smi_msg = ++{ ++	.done = heartbeat_free_smi ++}; ++static struct ipmi_recv_msg heartbeat_recv_msg = ++{ ++	.done = heartbeat_free_recv ++}; ++  ++static int ipmi_heartbeat(void) ++{ ++	struct ipmi_msg                   msg; ++	int                               rv; ++	struct ipmi_system_interface_addr addr; ++ ++	if (ipmi_ignore_heartbeat) { ++		return 0; ++	} ++ ++	if (ipmi_start_timer_on_heartbeat) { ++		ipmi_start_timer_on_heartbeat = 0; ++		ipmi_watchdog_state = action_val; ++		return ipmi_set_timeout(); ++	} ++ ++	down(&heartbeat_lock); ++ ++	atomic_set(&heartbeat_tofree, 2); ++ ++	/* Don't reset the timer if we have the timer turned off, that ++           re-enables the watchdog. */ ++	if (ipmi_watchdog_state == WDOG_TIMEOUT_NONE) { ++		up(&heartbeat_lock); ++		return 0; ++	} ++ ++	addr.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE; ++	addr.channel = IPMI_BMC_CHANNEL; ++	addr.lun = 0; ++ ++	msg.netfn = 0x06; ++	msg.cmd = IPMI_WDOG_RESET_TIMER; ++	msg.data = NULL; ++	msg.data_len = 0; ++	rv = ipmi_request_supply_msgs(watchdog_user, ++				      (struct ipmi_addr *) &addr, ++				      0, ++				      &msg, ++				      &heartbeat_smi_msg, ++				      &heartbeat_recv_msg, ++				      1); ++	if (rv) { ++		up(&heartbeat_lock); ++		printk(KERN_WARNING "IPMI Watchdog, heartbeat failure: %d\n", ++		       rv); ++		return rv; ++	} ++ ++	/* Wait for the heartbeat to be sent. */ ++	down(&heartbeat_wait_lock); ++ ++	if (heartbeat_recv_msg.msg.data[0] != 0) { ++	    /* Got an error in the heartbeat response.  It was already ++	       reported in ipmi_wdog_msg_handler, but we should return ++	       an error here. */ ++	    rv = -EINVAL; ++	} ++ ++	up(&heartbeat_lock); ++ ++	return rv; ++} ++ ++static struct watchdog_info ident= ++{ ++	0, /* WDIOF_SETTIMEOUT, */ ++	1, ++	"IPMI" ++}; ++ ++static int ipmi_ioctl(struct inode *inode, struct file *file, ++		      unsigned int cmd, unsigned long arg) ++{ ++	int i; ++	int val; ++ ++	switch(cmd) { ++	case WDIOC_GETSUPPORT: ++		i = copy_to_user((void*)arg, &ident, sizeof(ident)); ++		return i ? -EFAULT : 0; ++ ++	case WDIOC_SETTIMEOUT: ++		i = copy_from_user(&val, (void *) arg, sizeof(int)); ++		if (i) ++			return -EFAULT; ++		timeout = val; ++		return ipmi_set_timeout(); ++ ++	case WDIOC_GETTIMEOUT: ++		i = copy_to_user((void *) arg, ++				 &timeout, ++				 sizeof(timeout)); ++		if (i) ++			return -EFAULT; ++		return 0; ++ ++	case WDIOC_SET_PRETIMEOUT: ++		i = copy_from_user(&val, (void *) arg, sizeof(int)); ++		if (i) ++			return -EFAULT; ++		pretimeout = val; ++		return ipmi_set_timeout(); ++ ++	case WDIOC_GET_PRETIMEOUT: ++		i = copy_to_user((void *) arg, ++				 &pretimeout, ++				 sizeof(pretimeout)); ++		if (i) ++			return -EFAULT; ++		return 0; ++ ++	case WDIOC_KEEPALIVE: ++		return ipmi_heartbeat(); ++ ++	case WDIOC_SETOPTIONS: ++		i = copy_from_user(&val, (void *) arg, sizeof(int)); ++		if (i) ++			return -EFAULT; ++		if (val & WDIOS_DISABLECARD) ++		{ ++			ipmi_watchdog_state = WDOG_TIMEOUT_NONE; ++			ipmi_set_timeout(); ++			ipmi_start_timer_on_heartbeat = 0; ++		} ++ ++		if (val & WDIOS_ENABLECARD) ++		{ ++			ipmi_watchdog_state = action_val; ++			ipmi_set_timeout(); ++		} ++		return 0; ++ ++	case WDIOC_GETSTATUS: ++		val = 0; ++		return copy_to_user((void *) arg, &val, sizeof(val)); ++ ++	default: ++		return -ENOIOCTLCMD; ++	} ++} ++ ++static ssize_t ipmi_write(struct file *file, ++			  const char  *buf, ++			  size_t      len, ++			  loff_t      *ppos) ++{ ++	int rv; ++ ++	/*  Can't seek (pwrite) on this device  */ ++	if (ppos != &file->f_pos) ++		return -ESPIPE; ++ ++	if (len) { ++		rv = ipmi_heartbeat(); ++		if (rv) ++			return rv; ++		return 1; ++	} ++	return 0; ++} ++ ++static ssize_t ipmi_read(struct file *file, ++			 char        *buf, ++			 size_t      count, ++			 loff_t      *ppos) ++{ ++	/*  Can't seek (pread) on this device  */ ++	if (ppos != &file->f_pos) ++		return -ESPIPE; ++ ++	/* Also can't read it. */ ++	return -EINVAL; ++} ++ ++static int ipmi_open(struct inode *ino, struct file *filep) ++{ ++        switch (minor(ino->i_rdev)) ++        { ++                case WATCHDOG_MINOR: ++                    if (ipmi_wdog_open) ++                        return -EBUSY; ++ ++                    MOD_INC_USE_COUNT; ++                    ipmi_wdog_open = 1; ++ ++		    /* Don't start the timer now, let it start on the ++		       first heartbeat. */ ++		    ipmi_start_timer_on_heartbeat = 1; ++                    return(0); ++ ++                default: ++                    return (-ENODEV); ++        } ++} ++ ++static int ipmi_close(struct inode *ino, struct file *filep) ++{ ++	if (minor(ino->i_rdev)==WATCHDOG_MINOR) ++	{ ++#ifndef CONFIG_WATCHDOG_NOWAYOUT	 ++		ipmi_watchdog_state = WDOG_TIMEOUT_NONE; ++		ipmi_set_timeout(); ++#endif		 ++	        ipmi_wdog_open = 0; ++		MOD_DEC_USE_COUNT; ++	} ++	return 0; ++} ++ ++static struct file_operations ipmi_wdog_fops = { ++	.owner   = THIS_MODULE, ++	.read    = ipmi_read, ++	.write   = ipmi_write, ++	.ioctl   = ipmi_ioctl, ++	.open    = ipmi_open, ++	.release = ipmi_close, ++}; ++ ++static struct miscdevice ipmi_wdog_miscdev = { ++	WATCHDOG_MINOR, ++	"watchdog", ++	&ipmi_wdog_fops ++}; ++ ++static spinlock_t register_lock = SPIN_LOCK_UNLOCKED; ++ ++static void ipmi_wdog_msg_handler(struct ipmi_recv_msg *msg, ++				  void            *handler_data) ++{ ++	if (msg->msg.data[0] != 0) { ++		printk(KERN_ERR "IPMI Watchdog response: Error %x on cmd %x\n", ++		       msg->msg.data[0], ++		       msg->msg.cmd); ++	} ++	 ++	ipmi_free_recv_msg(msg); ++} ++ ++static void ipmi_wdog_pretimeout_handler(void *handler_data) ++{ ++	panic("Watchdog pre-timeout"); ++} ++ ++static struct ipmi_user_hndl ipmi_hndlrs = ++{ ++	.ipmi_recv_hndl           = ipmi_wdog_msg_handler, ++	.ipmi_watchdog_pretimeout = ipmi_wdog_pretimeout_handler ++}; ++ ++static void ipmi_register_watchdog(int ipmi_intf) ++{ ++	unsigned long flags; ++	int           rv = -EBUSY; ++ ++	spin_lock_irqsave(®ister_lock, flags); ++	if (watchdog_user) ++		goto out; ++ ++	rv = ipmi_create_user(ipmi_intf, &ipmi_hndlrs, NULL, &watchdog_user); ++	if (rv < 0) { ++		printk("IPMI watchdog: Unable to register with ipmi\n"); ++		goto out; ++	} ++ ++	ipmi_get_version(watchdog_user, ++			 &ipmi_version_major, ++			 &ipmi_version_minor); ++ ++	rv = misc_register(&ipmi_wdog_miscdev); ++	if (rv < 0) { ++		ipmi_destroy_user(watchdog_user); ++		watchdog_user = NULL; ++		printk("IPMI watchdog: Unable to register misc device\n"); ++	} ++ ++ out: ++	spin_unlock_irqrestore(®ister_lock, flags); ++ ++	if ((start_now) && (rv == 0)) { ++		/* Run from startup, so start the timer now. */ ++		start_now = 0; /* Disable this function after first startup. */ ++		ipmi_watchdog_state = action_val; ++		ipmi_set_timeout(); ++		printk("Starting IPMI Watchdog now!\n"); ++	} ++} ++ ++#ifdef HAVE_NMI_HANDLER ++static int ++ipmi_nmi(void *dev_id, struct pt_regs *regs, int cpu, int handled) ++{ ++	/* If no one else handled the NMI, we assume it was the IPMI ++           watchdog. */ ++	if (!handled) ++		panic("IPMI watchdog pre-timeout"); ++	return NOTIFY_DONE; ++} ++ ++static struct nmi_handler ipmi_nmi_handler = ++{ ++	.link     = LIST_HEAD_INIT(ipmi_nmi_handler.link), ++	.dev_name = "ipmi_watchdog", ++	.dev_id   = NULL, ++	.handler  = ipmi_nmi, ++	.priority = 0, /* Call us last. */ ++}; ++#endif ++ ++static int wdog_reboot_handler(struct notifier_block *this, ++			       unsigned long         code, ++			       void                  *unused) ++{ ++	static int reboot_event_handled = 0; ++ ++	if ((watchdog_user) && (!reboot_event_handled)) { ++		/* Make sure we only do this once. */ ++		reboot_event_handled = 1; ++ ++		if (code == SYS_DOWN || code == SYS_HALT) { ++			/* Disable the WDT if we are shutting down. */ ++			ipmi_watchdog_state = WDOG_TIMEOUT_NONE; ++			ipmi_set_timeout(); ++		} else { ++			/* Set a long timer to let the reboot happens, but ++			   reboot if it hangs. */ ++			timeout = 120; ++			pretimeout = 0; ++			ipmi_watchdog_state = WDOG_TIMEOUT_RESET; ++			ipmi_set_timeout(); ++		} ++	} ++	return NOTIFY_OK; ++} ++ ++static struct notifier_block wdog_reboot_notifier = { ++	wdog_reboot_handler, ++	NULL, ++	0 ++}; ++ ++extern int panic_timeout; /* Why isn't this defined anywhere? */ ++ ++static int wdog_panic_handler(struct notifier_block *this, ++			      unsigned long         event, ++			      void                  *unused) ++{ ++	static int panic_event_handled = 0; ++ ++	/* On a panic, if we have a panic timeout, make sure that the thing ++	   reboots, even if it hangs during that panic. */ ++	if (watchdog_user && !panic_event_handled && (panic_timeout > 0)) { ++		/* Make sure the panic doesn't hang, and make sure we ++		   do this only once. */ ++		panic_event_handled = 1; ++	     ++		timeout = panic_timeout + 120; ++		if (timeout > 255) ++			timeout = 255; ++		pretimeout = 0; ++		ipmi_watchdog_state = WDOG_TIMEOUT_RESET; ++		ipmi_set_timeout(); ++	} ++ ++	return NOTIFY_OK; ++} ++ ++static struct notifier_block wdog_panic_notifier = { ++	wdog_panic_handler, ++	NULL, ++	150   /* priority: INT_MAX >= x >= 0 */ ++}; ++ ++ ++static void ipmi_new_smi(int if_num) ++{ ++	ipmi_register_watchdog(if_num); ++} ++ ++static void ipmi_smi_gone(int if_num) ++{ ++	/* This can never be called, because once the watchdog is ++	   registered, the interface can't go away until the watchdog ++	   is unregistered. */ ++} ++ ++static struct ipmi_smi_watcher smi_watcher = ++{ ++	.new_smi  = ipmi_new_smi, ++	.smi_gone = ipmi_smi_gone ++}; ++ ++static int __init ipmi_wdog_init(void) ++{ ++	int rv; ++ ++	if (strcmp(action, "reset") == 0) { ++		action_val = WDOG_TIMEOUT_RESET; ++	} else if (strcmp(action, "power_cycle") == 0) { ++		action_val = WDOG_TIMEOUT_POWER_CYCLE; ++	} else if (strcmp(action, "power_off") == 0) { ++		action_val = WDOG_TIMEOUT_POWER_DOWN; ++	} else { ++		action_val = WDOG_TIMEOUT_RESET; ++		printk("ipmi_watchdog: Unknown action '%s', defaulting to" ++		       " reset\n", action); ++	} ++ ++	if (strcmp(preaction, "none") == 0) { ++		preaction_val = WDOG_PRETIMEOUT_NONE; ++	} else if (strcmp(preaction, "pre_smi") == 0) { ++		preaction_val = WDOG_PRETIMEOUT_SMI; ++#ifdef HAVE_NMI_HANDLER ++	} else if (strcmp(preaction, "pre_nmi") == 0) { ++		preaction_val = WDOG_PRETIMEOUT_NMI; ++#endif ++	} else if (strcmp(preaction, "pre_int") == 0) { ++		preaction_val = WDOG_PRETIMEOUT_MSG_INT; ++	} else { ++		action_val = WDOG_PRETIMEOUT_NONE; ++		printk("ipmi_watchdog: Unknown preaction '%s', defaulting to" ++		       " none\n", preaction); ++	} ++ ++#ifdef HAVE_NMI_HANDLER ++	if (preaction_val == WDOG_PRETIMEOUT_NMI) { ++		rv = request_nmi(&ipmi_nmi_handler); ++		if (rv) { ++			printk(KERN_WARNING ++			       "impi_watchdog: Can't register nmi handler\n"); ++			return rv; ++		} ++	} ++#endif ++ ++	rv = ipmi_smi_watcher_register(&smi_watcher); ++	if (rv) { ++#ifdef HAVE_NMI_HANDLER ++		if (preaction_val == WDOG_PRETIMEOUT_NMI) ++			release_nmi(&ipmi_nmi_handler); ++#endif ++		printk(KERN_WARNING ++		       "ipmi_watchdog: can't register smi watcher\n"); ++		return rv; ++	} ++ ++	register_reboot_notifier(&wdog_reboot_notifier); ++	notifier_chain_register(&panic_notifier_list, &wdog_panic_notifier); ++ ++	printk(KERN_INFO "IPMI watchdog by " ++	       "Corey Minyard (minyard@mvista.com)\n"); ++ ++	return 0; ++} ++ ++#ifdef MODULE ++static void ipmi_unregister_watchdog(void) ++{ ++	int           rv; ++	unsigned long flags; ++ ++	spin_lock_irqsave(®ister_lock, flags); ++ ++	if (! watchdog_user) ++		goto out; ++ ++#ifdef HAVE_NMI_HANDLER ++	if (preaction_val == WDOG_PRETIMEOUT_NMI) ++		release_nmi(&ipmi_nmi_handler); ++#endif ++ ++	/* Make sure no one can call us any more. */ ++	misc_deregister(&ipmi_wdog_miscdev); ++ ++	notifier_chain_unregister(&panic_notifier_list, &wdog_panic_notifier); ++	unregister_reboot_notifier(&wdog_reboot_notifier); ++ ++	/*  Disable the timer. */ ++	ipmi_watchdog_state = WDOG_TIMEOUT_NONE; ++	ipmi_set_timeout(); ++ ++	/* Wait to make sure the message makes it out.  The lower layer has ++	   pointers to our buffers, we want to make sure they are done before ++	   we release our memory. */ ++	while (atomic_read(&set_timeout_tofree)) { ++		schedule_timeout(1); ++	} ++ ++	/* Disconnect from IPMI. */ ++	rv = ipmi_destroy_user(watchdog_user); ++	if (rv) { ++		printk(KERN_WARNING ++		       "IPMI Watchdog, error unlinking from IPMI: %d\n", ++		       rv); ++	} ++	watchdog_user = NULL; ++ ++ out: ++	spin_unlock_irqrestore(®ister_lock, flags); ++} ++ ++static void __exit ipmi_wdog_exit(void) ++{ ++	ipmi_smi_watcher_unregister(&smi_watcher); ++	ipmi_unregister_watchdog(); ++} ++module_exit(ipmi_wdog_exit); ++#else ++static int __init ipmi_wdog_setup(char *str) ++{ ++	int  val; ++	int  rv; ++	char *option; ++ ++	rv = get_option(&str, &val); ++	if (rv == 0) ++		return 1; ++	if (val > 0) ++		timeout = val; ++	if (rv == 1) ++		return 1; ++ ++	rv = get_option(&str, &val); ++	if (rv == 0) ++		return 1; ++	if (val >= 0) ++		pretimeout = val; ++	if (rv == 1) ++		return 1; ++ ++	while ((option = strsep(&str, ",")) != NULL) { ++		if (strcmp(str, "reset") == 0) { ++			action = "reset"; ++		} ++		else if (strcmp(str, "power_cycle") == 0) { ++			action = "power_cycle"; ++		} ++		else if (strcmp(str, "power_off") == 0) { ++			action = "power_off"; ++		} ++		else if (strcmp(str, "pre_smi") == 0) { ++			preaction = "pre_smi"; ++		} ++#ifdef HAVE_NMI_HANDLER ++		else if (strcmp(str, "pre_nmi") == 0) { ++			preaction = "pre_nmi"; ++		} ++#endif ++		else if (strcmp(str, "pre_int") == 0) { ++			preaction = "pre_int"; ++		} ++		else if (strcmp(str, "start_now") == 0) { ++			start_now = 1; ++		} else { ++		    printk("Unknown IPMI watchdog option: '%s'\n", str); ++		} ++	} ++ ++	return 1; ++} ++__setup("ipmi_wdog=", ipmi_wdog_setup); ++#endif ++ ++EXPORT_SYMBOL(ipmi_delayed_shutdown); ++ ++module_init(ipmi_wdog_init); ++MODULE_LICENSE("GPL"); +diff -urN linux.orig/include/asm-i386/apic.h linux/include/asm-i386/apic.h +--- linux.orig/include/asm-i386/apic.h	Mon Oct 21 13:26:04 2002 ++++ linux/include/asm-i386/apic.h	Tue Oct 22 12:40:16 2002 +@@ -79,7 +79,6 @@ + extern void setup_boot_APIC_clock (void); + extern void setup_secondary_APIC_clock (void); + extern void setup_apic_nmi_watchdog (void); +-extern inline void nmi_watchdog_tick (struct pt_regs * regs); + extern int APIC_init_uniprocessor (void); + extern void disable_APIC_timer(void); + extern void enable_APIC_timer(void); +diff -urN linux.orig/include/asm-i386/nmi.h linux/include/asm-i386/nmi.h +--- linux.orig/include/asm-i386/nmi.h	Mon Oct 21 13:25:52 2002 ++++ linux/include/asm-i386/nmi.h	Thu Oct 24 20:50:22 2002 +@@ -5,26 +5,11 @@ + #define ASM_NMI_H +  + #include <linux/pm.h> ++#include <linux/rcupdate.h> ++#include <linux/sched.h> +   + struct pt_regs; +   +-typedef int (*nmi_callback_t)(struct pt_regs * regs, int cpu); +-  +-/**  +- * set_nmi_callback +- * +- * Set a handler for an NMI. Only one handler may be +- * set. Return 1 if the NMI was handled. +- */ +-void set_nmi_callback(nmi_callback_t callback); +-  +-/**  +- * unset_nmi_callback +- * +- * Remove the handler previously set. +- */ +-void unset_nmi_callback(void); +-  + #ifdef CONFIG_PM +   + /** Replace the PM callback routine for NMI. */ +@@ -45,5 +30,34 @@ + } +  + #endif /* CONFIG_PM */ ++ ++ ++/** ++ * Register a handler to get called when an NMI occurs.  If the ++ * handler actually handles the NMI, it should return NOTIFY_OK.  If ++ * it did not handle the NMI, it should return NOTIFY_DONE.  It may "or" ++ * on NOTIFY_STOP_MASK to the return value if it does not want other ++ * handlers after it to be notified. ++ */ ++#define HAVE_NMI_HANDLER	1 ++struct nmi_handler ++{ ++	struct list_head link; /* You must init this before use. */ ++ ++	char *dev_name; ++	void *dev_id; ++	int (*handler)(void *dev_id, struct pt_regs *regs, int cpu, int handled); ++	int  priority; /* Handlers called in priority order. */ ++ ++	/* Don't mess with anything below here. */ ++ ++	struct rcu_head    rcu; ++	struct completion  complete; ++}; ++ ++int request_nmi(struct nmi_handler *handler); ++ ++/* Release will block until the handler is completely free. */ ++void release_nmi(struct nmi_handler *handler); +   + #endif /* ASM_NMI_H */ +diff -urN linux.orig/include/linux/ipmi.h linux/include/linux/ipmi.h +--- linux.orig/include/linux/ipmi.h	Wed Dec 31 18:00:00 1969 ++++ linux/include/linux/ipmi.h	Wed Oct 30 13:51:55 2002 +@@ -0,0 +1,516 @@ ++/* ++ * ipmi.h ++ * ++ * MontaVista IPMI interface ++ * ++ * Author: MontaVista Software, Inc. ++ *         Corey Minyard <minyard@mvista.com> ++ *         source@mvista.com ++ * ++ * Copyright 2002 MontaVista Software Inc. ++ * ++ *  This program is free software; you can redistribute it and/or modify it ++ *  under the terms of the GNU General Public License as published by the ++ *  Free Software Foundation; either version 2 of the License, or (at your ++ *  option) any later version. ++ * ++ * ++ *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED ++ *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ++ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ++ *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS ++ *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ++ *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR ++ *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ++ *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ *  You should have received a copy of the GNU General Public License along ++ *  with this program; if not, write to the Free Software Foundation, Inc., ++ *  675 Mass Ave, Cambridge, MA 02139, USA. ++ */ ++ ++#ifndef __LINUX_IPMI_H ++#define __LINUX_IPMI_H ++ ++#include <linux/ipmi_msgdefs.h> ++ ++/* ++ * This file describes an interface to an IPMI driver.  You have to ++ * have a fairly good understanding of IPMI to use this, so go read ++ * the specs first before actually trying to do anything. ++ * ++ * With that said, this driver provides a multi-user interface to the ++ * IPMI driver, and it allows multiple IPMI physical interfaces below ++ * the driver.  The physical interfaces bind as a lower layer on the ++ * driver.  They appear as interfaces to the application using this ++ * interface. ++ * ++ * Multi-user means that multiple applications may use the driver, ++ * send commands, receive responses, etc.  The driver keeps track of ++ * commands the user sends and tracks the responses.  The responses ++ * will go back to the application that send the command.  If the ++ * response doesn't come back in time, the driver will return a ++ * timeout error response to the application.  Asynchronous events ++ * from the BMC event queue will go to all users bound to the driver. ++ * The incoming event queue in the BMC will automatically be flushed ++ * if it becomes full and it is queried once a second to see if ++ * anything is in it.  Incoming commands to the driver will get ++ * delivered as commands. ++ * ++ * This driver provides two main interfaces: one for in-kernel ++ * applications and another for userland applications.  The ++ * capabilities are basically the same for both interface, although ++ * the interfaces are somewhat different.  The stuff in the ++ * #ifdef KERNEL below is the in-kernel interface.  The userland ++ * interface is defined later in the file.  */ ++ ++ ++ ++/* ++ * This is an overlay for all the address types, so it's easy to ++ * determine the actual address type.  This is kind of like addresses ++ * work for sockets. ++ */ ++#define IPMI_MAX_ADDR_SIZE 32 ++struct ipmi_addr ++{ ++	 /* Try to take these from the "Channel Medium Type" table ++	    in section 6.5 of the IPMI 1.5 manual. */ ++	int   addr_type; ++	short channel; ++	char  data[IPMI_MAX_ADDR_SIZE]; ++}; ++ ++/* ++ * When the address is not used, the type will be set to this value. ++ * The channel is the BMC's channel number for the channel (usually ++ * 0), or IPMC_BMC_CHANNEL if communicating directly with the BMC. ++ */ ++#define IPMI_SYSTEM_INTERFACE_ADDR_TYPE	0x0c ++struct ipmi_system_interface_addr ++{ ++	int           addr_type; ++	short         channel; ++	unsigned char lun; ++}; ++ ++/* An IPMB Address. */ ++#define IPMI_IPMB_ADDR_TYPE		0x01 ++/* Used for broadcast get device id as described in section 17.9 of the ++   IPMI 1.5 manual. */  ++#define IPMI_IPMB_BROADCAST_ADDR_TYPE	0x41 ++struct ipmi_ipmb_addr ++{ ++	int           addr_type; ++	short         channel; ++	unsigned char slave_addr; ++	unsigned char lun; ++}; ++ ++ ++/* ++ * Channel for talking directly with the BMC.  When using this ++ * channel, This is for the system interface address type only.  FIXME ++ * - is this right, or should we use -1? ++ */ ++#define IPMI_BMC_CHANNEL  0xf ++#define IPMI_NUM_CHANNELS 0x10 ++ ++ ++/* ++ * A raw IPMI message without any addressing.  This covers both ++ * commands and responses.  The completion code is always the first ++ * byte of data in the response (as the spec shows the messages laid ++ * out). ++ */ ++struct ipmi_msg ++{ ++	unsigned char  netfn; ++	unsigned char  cmd; ++	unsigned short data_len; ++	unsigned char  *data; ++}; ++ ++/* ++ * Various defines that are useful for IPMI applications. ++ */ ++#define IPMI_INVALID_CMD_COMPLETION_CODE	0xC1 ++#define IPMI_TIMEOUT_COMPLETION_CODE		0xC3 ++#define IPMI_UNKNOWN_ERR_COMPLETION_CODE	0xff ++ ++ ++/* ++ * Receive types for messages coming from the receive interface.  This ++ * is used for the receive in-kernel interface and in the receive ++ * IOCTL. ++ */ ++#define IPMI_RESPONSE_RECV_TYPE		1 /* A response to a command */ ++#define IPMI_ASYNC_EVENT_RECV_TYPE	2 /* Something from the event queue */ ++#define IPMI_CMD_RECV_TYPE		3 /* A command from somewhere else */ ++/* Note that async events and received commands do not have a completion ++   code as the first byte of the incoming data, unlike a response. */ ++ ++ ++ ++#ifdef __KERNEL__ ++ ++/* ++ * The in-kernel interface. ++ */ ++#include <linux/list.h> ++ ++/* Opaque type for a IPMI message user.  One of these is needed to ++   send and receive messages. */ ++typedef struct ipmi_user *ipmi_user_t; ++ ++/* ++ * Stuff coming from the recieve interface comes as one of these. ++ * They are allocated, the receiver must free them with ++ * ipmi_free_recv_msg() when done with the message.  The link is not ++ * used after the message is delivered, so the upper layer may use the ++ * link to build a linked list, if it likes. ++ */ ++struct ipmi_recv_msg ++{ ++	struct list_head link; ++ ++	/* The type of message as defined in the "Receive Types" ++           defines above. */ ++	int              recv_type; ++ ++	ipmi_user_t      user; ++	struct ipmi_addr addr; ++	long             msgid; ++	struct ipmi_msg  msg; ++ ++	/* Call this when done with the message.  It will presumably free ++	   the message and do any other necessary cleanup. */ ++	void (*done)(struct ipmi_recv_msg *msg); ++ ++	/* Place-holder for the data, don't make any assumptions about ++	   the size or existance of this, since it may change. */ ++	unsigned char   msg_data[IPMI_MAX_MSG_LENGTH]; ++}; ++ ++/* Allocate and free the receive message. */ ++static inline void ipmi_free_recv_msg(struct ipmi_recv_msg *msg) ++{ ++	msg->done(msg); ++} ++struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); ++ ++struct ipmi_user_hndl ++{ ++        /* Routine type to call when a message needs to be routed to ++	   the upper layer.  This will be called with some locks held, ++	   the only IPMI routines that can be called are ipmi_request ++	   and the alloc/free operations. */ ++	void (*ipmi_recv_hndl)(struct ipmi_recv_msg *msg, ++			       void                 *handler_data); ++ ++	/* Called when the interface detects a watchdog pre-timeout.  If ++	   this is NULL, it will be ignored for the user. */ ++	void (*ipmi_watchdog_pretimeout)(void *handler_data); ++}; ++ ++/* Create a new user of the IPMI layer on the given interface number. */ ++int ipmi_create_user(unsigned int          if_num, ++		     struct ipmi_user_hndl *handler, ++		     void                  *handler_data, ++		     ipmi_user_t           *user); ++ ++/* Destroy the given user of the IPMI layer. */ ++int ipmi_destroy_user(ipmi_user_t user); ++ ++/* Get the IPMI version of the BMC we are talking to. */ ++void ipmi_get_version(ipmi_user_t   user, ++		      unsigned char *major, ++		      unsigned char *minor); ++ ++/* Set and get the slave address and LUN that we will use for our ++   source messages.  Note that this affects the interface, not just ++   this user, so it will affect all users of this interface.  This is ++   so some initialization code can come in and do the OEM-specific ++   things it takes to determine your address (if not the BMC) and set ++   it for everyone else. */ ++void ipmi_set_my_address(ipmi_user_t   user, ++			 unsigned char address); ++unsigned char ipmi_get_my_address(ipmi_user_t user); ++void ipmi_set_my_LUN(ipmi_user_t   user, ++		     unsigned char LUN); ++unsigned char ipmi_get_my_LUN(ipmi_user_t user); ++ ++/* ++ * Send a command request from the given user.  The address is the ++ * proper address for the channel type.  If this is a command, then ++ * the message response comes back, the receive handler for this user ++ * will be called with the given msgid value in the recv msg.  If this ++ * is a response to a command, then the msgid will be used as the ++ * sequence number for the response (truncated if necessary), so when ++ * sending a response you should use the sequence number you received ++ * in the msgid field of the received command.  If the priority is > ++ * 0, the message will go into a high-priority queue and be sent ++ * first.  Otherwise, it goes into a normal-priority queue. ++ */ ++int ipmi_request(ipmi_user_t      user, ++		 struct ipmi_addr *addr, ++		 long             msgid, ++		 struct ipmi_msg  *msg, ++		 int              priority); ++ ++/* ++ * Like ipmi_request, but lets you specify the slave return address. ++ */ ++int ipmi_request_with_source(ipmi_user_t      user, ++			     struct ipmi_addr *addr, ++			     long             msgid, ++			     struct ipmi_msg  *msg, ++			     int              priority, ++			     unsigned char    source_address, ++			     unsigned char    source_lun); ++ ++/* ++ * Like ipmi_request, but with messages supplied.  This will not ++ * allocate any memory, and the messages may be statically allocated ++ * (just make sure to do the "done" handling on them).  Note that this ++ * is primarily for the watchdog timer, since it should be able to ++ * send messages even if no memory is available.  This is subject to ++ * change as the system changes, so don't use it unless you REALLY ++ * have to. ++ */ ++int ipmi_request_supply_msgs(ipmi_user_t          user, ++			     struct ipmi_addr     *addr, ++			     long                 msgid, ++			     struct ipmi_msg      *msg, ++			     void                 *supplied_smi, ++			     struct ipmi_recv_msg *supplied_recv, ++			     int                  priority); ++ ++/* ++ * When commands come in to the SMS, the user can register to receive ++ * them.  Only one user can be listening on a specific netfn/cmd pair ++ * at a time, you will get an EBUSY error if the command is already ++ * registered.  If a command is received that does not have a user ++ * registered, the driver will automatically return the proper ++ * error. ++ */ ++int ipmi_register_for_cmd(ipmi_user_t   user, ++			  unsigned char netfn, ++			  unsigned char cmd); ++int ipmi_unregister_for_cmd(ipmi_user_t   user, ++			    unsigned char netfn, ++			    unsigned char cmd); ++ ++/* ++ * When the user is created, it will not receive IPMI events by ++ * default.  The user must set this to TRUE to get incoming events. ++ * The first user that sets this to TRUE will receive all events that ++ * have been queued while no one was waiting for events. ++ */ ++int ipmi_set_gets_events(ipmi_user_t user, int val); ++ ++/* ++ * Register the given user to handle all received IPMI commands.  This ++ * will fail if anyone is registered as a command receiver or if ++ * another is already registered to receive all commands.  NOTE THAT ++ * THIS IS FOR EMULATION USERS ONLY, DO NOT USER THIS FOR NORMAL ++ * STUFF. ++ */ ++int ipmi_register_all_cmd_rcvr(ipmi_user_t user); ++int ipmi_unregister_all_cmd_rcvr(ipmi_user_t user); ++ ++ ++/* ++ * Called when a new SMI is registered.  This will also be called on ++ * every existing interface when a new watcher is registered with ++ * ipmi_smi_watcher_register(). ++ */ ++struct ipmi_smi_watcher ++{ ++	struct list_head link; ++ ++	/* These two are called with read locks held for the interface ++	   the watcher list.  So you can add and remove users from the ++	   IPMI interface, send messages, etc., but you cannot add ++	   or remove SMI watchers or SMI interfaces. */ ++	void (*new_smi)(int if_num); ++	void (*smi_gone)(int if_num); ++}; ++ ++int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher); ++int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher); ++ ++/* The following are various helper functions for dealing with IPMI ++   addresses. */ ++ ++/* Return the maximum length of an IPMI address given it's type. */ ++unsigned int ipmi_addr_length(int addr_type); ++ ++/* Validate that the given IPMI address is valid. */ ++int ipmi_validate_addr(struct ipmi_addr *addr, int len); ++ ++/* Return 1 if the given addresses are equal, 0 if not. */ ++int ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2); ++ ++#endif /* __KERNEL__ */ ++ ++ ++/* ++ * The userland interface ++ */ ++ ++/* ++ * The userland interface for the IPMI driver is a standard character ++ * device, with each instance of an interface registered as a minor ++ * number under the major character device. ++ * ++ * The read and write calls do not work, to get messages in and out ++ * requires ioctl calls because of the complexity of the data.  select ++ * and poll do work, so you can wait for input using the file ++ * descriptor, you just can use read to get it. ++ * ++ * In general, you send a command down to the interface and receive ++ * responses back.  You can use the msgid value to correlate commands ++ * and responses, the driver will take care of figuring out which ++ * incoming messages are for which command and find the proper msgid ++ * value to report.  You will only receive reponses for commands you ++ * send.  Asynchronous events, however, go to all open users, so you ++ * must be ready to handle these (or ignore them if you don't care). ++ * ++ * The address type depends upon the channel type.  When talking ++ * directly to the BMC (IPMC_BMC_CHANNEL), the address is ignored ++ * (IPMI_UNUSED_ADDR_TYPE).  When talking to an IPMB channel, you must ++ * supply a valid IPMB address with the addr_type set properly. ++ * ++ * When talking to normal channels, the driver takes care of the ++ * details of formatting and sending messages on that channel.  You do ++ * not, for instance, have to format a send command, you just send ++ * whatever command you want to the channel, the driver will create ++ * the send command, automatically issue receive command and get even ++ * commands, and pass those up to the proper user. ++ */ ++ ++ ++/* The magic IOCTL value for this interface. */ ++#define IPMI_IOC_MAGIC 'i' ++ ++ ++/* Messages sent to the interface are this format. */ ++struct ipmi_req ++{ ++	unsigned char *addr; /* Address to send the message to. */ ++	unsigned int  addr_len; ++ ++	long    msgid; /* The sequence number for the message.  This ++			  exact value will be reported back in the ++			  response to this request if it is a command. ++			  If it is a response, this will be used as ++			  the sequence value for the response.  */ ++ ++	struct ipmi_msg msg; ++}; ++/* ++ * Send a message to the interfaces.  error values are: ++ *   - EFAULT - an address supplied was invalid. ++ *   - EINVAL - The address supplied was not valid, or the command ++ *              was not allowed. ++ *   - EMSGSIZE - The message to was too large. ++ *   - ENOMEM - Buffers could not be allocated for the command. ++ */ ++#define IPMICTL_SEND_COMMAND		_IOR(IPMI_IOC_MAGIC, 13,	\ ++					     struct ipmi_req) ++ ++/* Messages received from the interface are this format. */ ++struct ipmi_recv ++{ ++	int     recv_type; /* Is this a command, response or an ++			      asyncronous event. */ ++ ++	unsigned char *addr;    /* Address the message was from is put ++				   here.  The caller must supply the ++				   memory. */ ++	unsigned int  addr_len; /* The size of the address buffer. ++				   The caller supplies the full buffer ++				   length, this value is updated to ++				   the actual message length when the ++				   message is received. */ ++ ++	long    msgid; /* The sequence number specified in the request ++			  if this is a response.  If this is a command, ++			  this will be the sequence number from the ++			  command. */ ++ ++	struct ipmi_msg msg; /* The data field must point to a buffer. ++				The data_size field must be set to the ++				size of the message buffer.  The ++				caller supplies the full buffer ++				length, this value is updated to the ++				actual message length when the message ++				is received. */ ++}; ++ ++/* ++ * Receive a message.  error values: ++ *  - EAGAIN - no messages in the queue. ++ *  - EFAULT - an address supplied was invalid. ++ *  - EINVAL - The address supplied was not valid. ++ *  - EMSGSIZE - The message to was too large to fit into the message buffer, ++ *               the message will be left in the buffer. */ ++#define IPMICTL_RECEIVE_MSG		_IOWR(IPMI_IOC_MAGIC, 12,	\ ++					      struct ipmi_recv) ++ ++/* ++ * Like RECEIVE_MSG, but if the message won't fit in the buffer, it ++ * will truncate the contents instead of leaving the data in the ++ * buffer. ++ */ ++#define IPMICTL_RECEIVE_MSG_TRUNC	_IOWR(IPMI_IOC_MAGIC, 11,	\ ++					      struct ipmi_recv) ++ ++/* Register to get commands from other entities on this interface. */ ++struct ipmi_cmdspec ++{ ++	unsigned char netfn; ++	unsigned char cmd; ++}; ++ ++/*  ++ * Register to receive a specific command.  error values: ++ *   - EFAULT - an address supplied was invalid. ++ *   - EBUSY - The netfn/cmd supplied was already in use. ++ *   - ENOMEM - could not allocate memory for the entry. ++ */ ++#define IPMICTL_REGISTER_FOR_CMD	_IOR(IPMI_IOC_MAGIC, 14,	\ ++					     struct ipmi_cmdspec) ++/* ++ * Unregister a regsitered command.  error values: ++ *  - EFAULT - an address supplied was invalid. ++ *  - ENOENT - The netfn/cmd was not found registered for this user. ++ */ ++#define IPMICTL_UNREGISTER_FOR_CMD	_IOR(IPMI_IOC_MAGIC, 15,	\ ++					     struct ipmi_cmdspec) ++ ++/*  ++ * Set whether this interface receives events.  Note that the first ++ * user registered for events will get all pending events for the ++ * interface.  error values: ++ *  - EFAULT - an address supplied was invalid. ++ */ ++#define IPMICTL_SET_GETS_EVENTS_CMD	_IOR(IPMI_IOC_MAGIC, 16, int) ++ ++/* ++ * Set and get the slave address and LUN that we will use for our ++ * source messages.  Note that this affects the interface, not just ++ * this user, so it will affect all users of this interface.  This is ++ * so some initialization code can come in and do the OEM-specific ++ * things it takes to determine your address (if not the BMC) and set ++ * it for everyone else.  You should probably leave the LUN alone. ++ */ ++#define IPMICTL_SET_MY_ADDRESS_CMD	_IOR(IPMI_IOC_MAGIC, 17, unsigned int) ++#define IPMICTL_GET_MY_ADDRESS_CMD	_IOR(IPMI_IOC_MAGIC, 18, unsigned int) ++#define IPMICTL_SET_MY_LUN_CMD		_IOR(IPMI_IOC_MAGIC, 19, unsigned int) ++#define IPMICTL_GET_MY_LUN_CMD		_IOR(IPMI_IOC_MAGIC, 20, unsigned int) ++ ++#endif /* __LINUX_IPMI_H */ +diff -urN linux.orig/include/linux/ipmi_msgdefs.h linux/include/linux/ipmi_msgdefs.h +--- linux.orig/include/linux/ipmi_msgdefs.h	Wed Dec 31 18:00:00 1969 ++++ linux/include/linux/ipmi_msgdefs.h	Thu Aug 22 08:26:11 2002 +@@ -0,0 +1,58 @@ ++/* ++ * ipmi_smi.h ++ * ++ * MontaVista IPMI system management interface ++ * ++ * Author: MontaVista Software, Inc. ++ *         Corey Minyard <minyard@mvista.com> ++ *         source@mvista.com ++ * ++ * Copyright 2002 MontaVista Software Inc. ++ * ++ *  This program is free software; you can redistribute it and/or modify it ++ *  under the terms of the GNU General Public License as published by the ++ *  Free Software Foundation; either version 2 of the License, or (at your ++ *  option) any later version. ++ * ++ * ++ *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED ++ *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ++ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ++ *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS ++ *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ++ *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR ++ *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ++ *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ *  You should have received a copy of the GNU General Public License along ++ *  with this program; if not, write to the Free Software Foundation, Inc., ++ *  675 Mass Ave, Cambridge, MA 02139, USA. ++ */ ++ ++#ifndef __LINUX_IPMI_MSGDEFS_H ++#define __LINUX_IPMI_MSGDEFS_H ++ ++/* Various definitions for IPMI messages used by almost everything in ++   the IPMI stack. */ ++ ++#define IPMI_NETFN_APP_REQUEST	0x06 ++#define IPMI_NETFN_APP_RESPONSE	0x07 ++ ++#define IPMI_BMC_SLAVE_ADDR	0x20 ++ ++#define IPMI_GET_DEVICE_ID_CMD		0x01 ++ ++#define IPMI_CLEAR_MSG_FLAGS_CMD	0x30 ++#define IPMI_GET_MSG_FLAGS_CMD		0x31 ++#define IPMI_SEND_MSG_CMD		0x34 ++#define IPMI_GET_MSG_CMD		0x33 ++ ++#define IPMI_SET_BMC_GLOBAL_ENABLES_CMD	0x2e ++#define IPMI_GET_BMC_GLOBAL_ENABLES_CMD	0x2f ++#define IPMI_READ_EVENT_MSG_BUFFER_CMD	0x35 ++ ++#define IPMI_MAX_MSG_LENGTH	80 ++ ++#endif /* __LINUX_IPMI_MSGDEFS_H */ +diff -urN linux.orig/include/linux/ipmi_smi.h linux/include/linux/ipmi_smi.h +--- linux.orig/include/linux/ipmi_smi.h	Wed Dec 31 18:00:00 1969 ++++ linux/include/linux/ipmi_smi.h	Sun Oct 13 16:25:50 2002 +@@ -0,0 +1,143 @@ ++/* ++ * ipmi_smi.h ++ * ++ * MontaVista IPMI system management interface ++ * ++ * Author: MontaVista Software, Inc. ++ *         Corey Minyard <minyard@mvista.com> ++ *         source@mvista.com ++ * ++ * Copyright 2002 MontaVista Software Inc. ++ * ++ *  This program is free software; you can redistribute it and/or modify it ++ *  under the terms of the GNU General Public License as published by the ++ *  Free Software Foundation; either version 2 of the License, or (at your ++ *  option) any later version. ++ * ++ * ++ *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED ++ *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ++ *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ++ *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ++ *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, ++ *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS ++ *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ++ *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR ++ *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ++ *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ++ * ++ *  You should have received a copy of the GNU General Public License along ++ *  with this program; if not, write to the Free Software Foundation, Inc., ++ *  675 Mass Ave, Cambridge, MA 02139, USA. ++ */ ++ ++#ifndef __LINUX_IPMI_SMI_H ++#define __LINUX_IPMI_SMI_H ++ ++#include <linux/ipmi_msgdefs.h> ++ ++/* This files describes the interface for IPMI system management interface ++   drivers to bind into the IPMI message handler. */ ++ ++/* Structure for the low-level drivers. */ ++typedef struct ipmi_smi *ipmi_smi_t; ++ ++/* ++ * Messages to/from the lower layer.  The smi interface will take one ++ * of these to send. After the send has occurred and a response has ++ * been received, it will report this same data structure back up to ++ * the upper layer.  If an error occurs, it should fill in the ++ * response with an error code in the completion code location. When ++ * asyncronous data is received, one of these is allocated, the ++ * data_size is set to zero and the response holds the data from the ++ * get message or get event command that the interface initiated. ++ * Note that it is the interfaces responsibility to detect ++ * asynchronous data and messages and request them from the ++ * interface. ++ */ ++struct ipmi_smi_msg ++{ ++	struct list_head link; ++ ++	long    msgid; ++	void    *user_data; ++ ++	/* If 0, add to the end of the queue.  If 1, add to the beginning. */ ++	int     prio; ++ ++	int           data_size; ++	unsigned char data[IPMI_MAX_MSG_LENGTH]; ++ ++	int           rsp_size; ++	unsigned char rsp[IPMI_MAX_MSG_LENGTH]; ++ ++	/* Will be called when the system is done with the message ++           (presumably to free it). */ ++	void (*done)(struct ipmi_smi_msg *msg); ++}; ++ ++struct ipmi_smi_handlers ++{ ++	/* Called to enqueue an SMI message to be sent.  This ++	   operation is not allowed to fail.  If an error occurs, it ++	   should report back the error in a received message.  It may ++	   do this in the current call context, since no write locks ++	   are held when this is run.  If the priority is > 0, the ++	   message will go into a high-priority queue and be sent ++	   first.  Otherwise, it goes into a normal-priority queue. */ ++	void (*sender)(void                *send_info, ++		       struct ipmi_smi_msg *msg, ++		       int                 priority); ++ ++	/* Called by the upper layer to request that we try to get ++	   events from the BMC we are attached to. */ ++	void (*request_events)(void *send_info); ++ ++	/* Called when someone is using the interface, so the module can ++	   adjust it's use count. */ ++	void (*new_user)(void *send_info); ++ ++	/* Called when someone is no longer using the interface, so the ++	   module can adjust it's use count. */ ++	void (*user_left)(void *send_info); ++ ++	/* Called when the interface should go into "run to ++	   completion" mode.  If this call sets the value to true, the ++	   interface should make sure that all messages are flushed ++	   out and that none are pending, and any new requests are run ++	   to completion immediately. */ ++	void (*set_run_to_completion)(void *send_info, int run_to_completion); ++}; ++ ++/* Add a low-level interface to the IPMI driver. */ ++int ipmi_register_smi(struct ipmi_smi_handlers *handlers, ++		      void                     *send_info, ++		      unsigned char            version_major, ++		      unsigned char            version_minor, ++		      ipmi_smi_t               *intf); ++ ++/* ++ * Remove a low-level interface from the IPMI driver.  This will ++ * return an error if the interface is still in use by a user. ++ */ ++int ipmi_unregister_smi(ipmi_smi_t intf); ++ ++/* ++ * The lower layer reports received messages through this interface. ++ * The data_size should be zero if this is an asyncronous message.  If ++ * the lower layer gets an error sending a message, it should format ++ * an error response in the message response. ++ */ ++void ipmi_smi_msg_received(ipmi_smi_t          intf, ++			   struct ipmi_smi_msg *msg); ++ ++/* The lower layer received a watchdog pre-timeout on interface. */ ++void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf); ++ ++struct ipmi_smi_msg *ipmi_alloc_smi_msg(void); ++static inline void ipmi_free_smi_msg(struct ipmi_smi_msg *msg) ++{ ++	msg->done(msg); ++} ++ ++#endif /* __LINUX_IPMI_SMI_H */ +diff -urN linux.orig/include/linux/nmi.h linux/include/linux/nmi.h +--- linux.orig/include/linux/nmi.h	Thu Jun 20 17:53:40 2002 ++++ linux/include/linux/nmi.h	Thu Oct 24 16:28:53 2002 +@@ -1,22 +1,11 @@ + /* +- *  linux/include/linux/nmi.h ++ *	linux/include/linux/nmi.h ++ * ++ *	(C) 2002 Corey Minyard <cminyard@mvista.com> ++ * ++ *	Include file for NMI handling. +  */ +-#ifndef LINUX_NMI_H +-#define LINUX_NMI_H +- +-#include <asm/irq.h> +- +-/** +- * touch_nmi_watchdog - restart NMI watchdog timeout. +- *  +- * If the architecture supports the NMI watchdog, touch_nmi_watchdog() +- * may be used to reset the timeout - for code which intentionally +- * disables interrupts for a long time. This call is stateless. +- */ +-#ifdef ARCH_HAS_NMI_WATCHDOG +-extern void touch_nmi_watchdog(void); +-#else +-# define touch_nmi_watchdog() do { } while(0) +-#endif +  ++#if defined(__i386__) ++#include <asm/nmi.h> + #endif +diff -urN linux.orig/include/linux/nmi_watchdog.h linux/include/linux/nmi_watchdog.h +--- linux.orig/include/linux/nmi_watchdog.h	Thu Oct 24 19:56:54 2002 ++++ linux/include/linux/nmi_watchdog.h	Thu Oct 24 12:50:30 2002 +@@ -0,0 +1,22 @@ ++/* ++ *  linux/include/linux/nmi.h ++ */ ++#ifndef LINUX_NMI_WATCHDOG_H ++#define LINUX_NMI_WATCHDOG_H ++ ++#include <asm/irq.h> ++ ++/** ++ * touch_nmi_watchdog - restart NMI watchdog timeout. ++ *  ++ * If the architecture supports the NMI watchdog, touch_nmi_watchdog() ++ * may be used to reset the timeout - for code which intentionally ++ * disables interrupts for a long time. This call is stateless. ++ */ ++#ifdef ARCH_HAS_NMI_WATCHDOG ++extern void touch_nmi_watchdog(void); ++#else ++# define touch_nmi_watchdog() do { } while(0) ++#endif ++ ++#endif | 
