diff options
Diffstat (limited to 'tests/intprops.h')
| -rw-r--r-- | tests/intprops.h | 319 | 
1 files changed, 278 insertions, 41 deletions
| diff --git a/tests/intprops.h b/tests/intprops.h index 46f4d47d..f85ccade 100644 --- a/tests/intprops.h +++ b/tests/intprops.h @@ -1,7 +1,6 @@  /* intprops.h -- properties of integer types -   Copyright (C) 2001, 2002, 2003, 2004, 2005, 2009, 2010 Free Software -   Foundation, Inc. +   Copyright (C) 2001-2005, 2009-2015 Free Software Foundation, Inc.     This program is free software: you can redistribute it and/or modify     it under the terms of the GNU General Public License as published by @@ -18,66 +17,304 @@  /* Written by Paul Eggert.  */ -#ifndef GL_INTPROPS_H -# define GL_INTPROPS_H +#ifndef _GL_INTPROPS_H +#define _GL_INTPROPS_H -# include <limits.h> +#include <limits.h> + +/* Return an integer value, converted to the same type as the integer +   expression E after integer type promotion.  V is the unconverted value.  */ +#define _GL_INT_CONVERT(e, v) (0 * (e) + (v)) + +/* Act like _GL_INT_CONVERT (E, -V) but work around a bug in IRIX 6.5 cc; see +   <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00406.html>.  */ +#define _GL_INT_NEGATE_CONVERT(e, v) (0 * (e) - (v))  /* The extra casts in the following macros work around compiler bugs,     e.g., in Cray C 5.0.3.0.  */  /* True if the arithmetic type T is an integer type.  bool counts as     an integer.  */ -# define TYPE_IS_INTEGER(t) ((t) 1.5 == 1) +#define TYPE_IS_INTEGER(t) ((t) 1.5 == 1)  /* True if negative values of the signed integer type T use two's     complement, ones' complement, or signed magnitude representation,     respectively.  Much GNU code assumes two's complement, but some     people like to be portable to all possible C hosts.  */ -# define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1) -# define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0) -# define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1) +#define TYPE_TWOS_COMPLEMENT(t) ((t) ~ (t) 0 == (t) -1) +#define TYPE_ONES_COMPLEMENT(t) ((t) ~ (t) 0 == 0) +#define TYPE_SIGNED_MAGNITUDE(t) ((t) ~ (t) 0 < (t) -1) + +/* True if the signed integer expression E uses two's complement.  */ +#define _GL_INT_TWOS_COMPLEMENT(e) (~ _GL_INT_CONVERT (e, 0) == -1)  /* True if the arithmetic type T is signed.  */ -# define TYPE_SIGNED(t) (! ((t) 0 < (t) -1)) +#define TYPE_SIGNED(t) (! ((t) 0 < (t) -1)) -/* The maximum and minimum values for the integer type T.  These +/* Return 1 if the integer expression E, after integer promotion, has +   a signed type.  */ +#define _GL_INT_SIGNED(e) (_GL_INT_NEGATE_CONVERT (e, 1) < 0) + + +/* Minimum and maximum values for integer types and expressions.  These     macros have undefined behavior if T is signed and has padding bits.     If this is a problem for you, please let us know how to fix it for     your host.  */ -# define TYPE_MINIMUM(t) \ -  ((t) (! TYPE_SIGNED (t) \ -        ? (t) 0 \ -        : TYPE_SIGNED_MAGNITUDE (t) \ -        ? ~ (t) 0 \ -        : ~ (t) 0 << (sizeof (t) * CHAR_BIT - 1))) -# define TYPE_MAXIMUM(t) \ -  ((t) (! TYPE_SIGNED (t) \ -        ? (t) -1 \ -        : ~ (~ (t) 0 << (sizeof (t) * CHAR_BIT - 1)))) - -/* Return zero if T can be determined to be an unsigned type. -   Otherwise, return 1. -   When compiling with GCC, INT_STRLEN_BOUND uses this macro to obtain a -   tighter bound.  Otherwise, it overestimates the true bound by one byte -   when applied to unsigned types of size 2, 4, 16, ... bytes. -   The symbol signed_type_or_expr__ is private to this header file.  */ -# if __GNUC__ >= 2 -#  define signed_type_or_expr__(t) TYPE_SIGNED (__typeof__ (t)) -# else -#  define signed_type_or_expr__(t) 1 -# endif + +/* The maximum and minimum values for the integer type T.  */ +#define TYPE_MINIMUM(t)                                                 \ +  ((t) (! TYPE_SIGNED (t)                                               \ +        ? (t) 0                                                         \ +        : TYPE_SIGNED_MAGNITUDE (t)                                     \ +        ? ~ (t) 0                                                       \ +        : ~ TYPE_MAXIMUM (t))) +#define TYPE_MAXIMUM(t)                                                 \ +  ((t) (! TYPE_SIGNED (t)                                               \ +        ? (t) -1                                                        \ +        : ((((t) 1 << (sizeof (t) * CHAR_BIT - 2)) - 1) * 2 + 1))) + +/* The maximum and minimum values for the type of the expression E, +   after integer promotion.  E should not have side effects.  */ +#define _GL_INT_MINIMUM(e)                                              \ +  (_GL_INT_SIGNED (e)                                                   \ +   ? - _GL_INT_TWOS_COMPLEMENT (e) - _GL_SIGNED_INT_MAXIMUM (e)         \ +   : _GL_INT_CONVERT (e, 0)) +#define _GL_INT_MAXIMUM(e)                                              \ +  (_GL_INT_SIGNED (e)                                                   \ +   ? _GL_SIGNED_INT_MAXIMUM (e)                                         \ +   : _GL_INT_NEGATE_CONVERT (e, 1)) +#define _GL_SIGNED_INT_MAXIMUM(e)                                       \ +  (((_GL_INT_CONVERT (e, 1) << (sizeof ((e) + 0) * CHAR_BIT - 2)) - 1) * 2 + 1) + + +/* Return 1 if the __typeof__ keyword works.  This could be done by +   'configure', but for now it's easier to do it by hand.  */ +#if (2 <= __GNUC__ || defined __IBM__TYPEOF__ \ +     || (0x5110 <= __SUNPRO_C && !__STDC__)) +# define _GL_HAVE___TYPEOF__ 1 +#else +# define _GL_HAVE___TYPEOF__ 0 +#endif + +/* Return 1 if the integer type or expression T might be signed.  Return 0 +   if it is definitely unsigned.  This macro does not evaluate its argument, +   and expands to an integer constant expression.  */ +#if _GL_HAVE___TYPEOF__ +# define _GL_SIGNED_TYPE_OR_EXPR(t) TYPE_SIGNED (__typeof__ (t)) +#else +# define _GL_SIGNED_TYPE_OR_EXPR(t) 1 +#endif + +/* Bound on length of the string representing an unsigned integer +   value representable in B bits.  log10 (2.0) < 146/485.  The +   smallest value of B where this bound is not tight is 2621.  */ +#define INT_BITS_STRLEN_BOUND(b) (((b) * 146 + 484) / 485)  /* Bound on length of the string representing an integer type or expression T. -   Subtract 1 for the sign bit if T is signed; log10 (2.0) < 146/485; -   add 1 for integer division truncation; add 1 more for a minus sign -   if needed.  */ -# define INT_STRLEN_BOUND(t) \ -  ((sizeof (t) * CHAR_BIT - signed_type_or_expr__ (t)) * 146 / 485 \ -   + signed_type_or_expr__ (t) + 1) +   Subtract 1 for the sign bit if T is signed, and then add 1 more for +   a minus sign if needed. + +   Because _GL_SIGNED_TYPE_OR_EXPR sometimes returns 0 when its argument is +   signed, this macro may overestimate the true bound by one byte when +   applied to unsigned types of size 2, 4, 16, ... bytes.  */ +#define INT_STRLEN_BOUND(t)                                     \ +  (INT_BITS_STRLEN_BOUND (sizeof (t) * CHAR_BIT                 \ +                          - _GL_SIGNED_TYPE_OR_EXPR (t))        \ +   + _GL_SIGNED_TYPE_OR_EXPR (t))  /* Bound on buffer size needed to represent an integer type or expression T,     including the terminating null.  */ -# define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1) +#define INT_BUFSIZE_BOUND(t) (INT_STRLEN_BOUND (t) + 1) + + +/* Range overflow checks. + +   The INT_<op>_RANGE_OVERFLOW macros return 1 if the corresponding C +   operators might not yield numerically correct answers due to +   arithmetic overflow.  They do not rely on undefined or +   implementation-defined behavior.  Their implementations are simple +   and straightforward, but they are a bit harder to use than the +   INT_<op>_OVERFLOW macros described below. + +   Example usage: + +     long int i = ...; +     long int j = ...; +     if (INT_MULTIPLY_RANGE_OVERFLOW (i, j, LONG_MIN, LONG_MAX)) +       printf ("multiply would overflow"); +     else +       printf ("product is %ld", i * j); + +   Restrictions on *_RANGE_OVERFLOW macros: + +   These macros do not check for all possible numerical problems or +   undefined or unspecified behavior: they do not check for division +   by zero, for bad shift counts, or for shifting negative numbers. + +   These macros may evaluate their arguments zero or multiple times, +   so the arguments should not have side effects.  The arithmetic +   arguments (including the MIN and MAX arguments) must be of the same +   integer type after the usual arithmetic conversions, and the type +   must have minimum value MIN and maximum MAX.  Unsigned types should +   use a zero MIN of the proper type. + +   These macros are tuned for constant MIN and MAX.  For commutative +   operations such as A + B, they are also tuned for constant B.  */ + +/* Return 1 if A + B would overflow in [MIN,MAX] arithmetic. +   See above for restrictions.  */ +#define INT_ADD_RANGE_OVERFLOW(a, b, min, max)          \ +  ((b) < 0                                              \ +   ? (a) < (min) - (b)                                  \ +   : (max) - (b) < (a)) + +/* Return 1 if A - B would overflow in [MIN,MAX] arithmetic. +   See above for restrictions.  */ +#define INT_SUBTRACT_RANGE_OVERFLOW(a, b, min, max)     \ +  ((b) < 0                                              \ +   ? (max) + (b) < (a)                                  \ +   : (a) < (min) + (b)) + +/* Return 1 if - A would overflow in [MIN,MAX] arithmetic. +   See above for restrictions.  */ +#define INT_NEGATE_RANGE_OVERFLOW(a, min, max)          \ +  ((min) < 0                                            \ +   ? (a) < - (max)                                      \ +   : 0 < (a)) + +/* Return 1 if A * B would overflow in [MIN,MAX] arithmetic. +   See above for restrictions.  Avoid && and || as they tickle +   bugs in Sun C 5.11 2010/08/13 and other compilers; see +   <http://lists.gnu.org/archive/html/bug-gnulib/2011-05/msg00401.html>.  */ +#define INT_MULTIPLY_RANGE_OVERFLOW(a, b, min, max)     \ +  ((b) < 0                                              \ +   ? ((a) < 0                                           \ +      ? (a) < (max) / (b)                               \ +      : (b) == -1                                       \ +      ? 0                                               \ +      : (min) / (b) < (a))                              \ +   : (b) == 0                                           \ +   ? 0                                                  \ +   : ((a) < 0                                           \ +      ? (a) < (min) / (b)                               \ +      : (max) / (b) < (a))) + +/* Return 1 if A / B would overflow in [MIN,MAX] arithmetic. +   See above for restrictions.  Do not check for division by zero.  */ +#define INT_DIVIDE_RANGE_OVERFLOW(a, b, min, max)       \ +  ((min) < 0 && (b) == -1 && (a) < - (max)) + +/* Return 1 if A % B would overflow in [MIN,MAX] arithmetic. +   See above for restrictions.  Do not check for division by zero. +   Mathematically, % should never overflow, but on x86-like hosts +   INT_MIN % -1 traps, and the C standard permits this, so treat this +   as an overflow too.  */ +#define INT_REMAINDER_RANGE_OVERFLOW(a, b, min, max)    \ +  INT_DIVIDE_RANGE_OVERFLOW (a, b, min, max) + +/* Return 1 if A << B would overflow in [MIN,MAX] arithmetic. +   See above for restrictions.  Here, MIN and MAX are for A only, and B need +   not be of the same type as the other arguments.  The C standard says that +   behavior is undefined for shifts unless 0 <= B < wordwidth, and that when +   A is negative then A << B has undefined behavior and A >> B has +   implementation-defined behavior, but do not check these other +   restrictions.  */ +#define INT_LEFT_SHIFT_RANGE_OVERFLOW(a, b, min, max)   \ +  ((a) < 0                                              \ +   ? (a) < (min) >> (b)                                 \ +   : (max) >> (b) < (a)) + + +/* The _GL*_OVERFLOW macros have the same restrictions as the +   *_RANGE_OVERFLOW macros, except that they do not assume that operands +   (e.g., A and B) have the same type as MIN and MAX.  Instead, they assume +   that the result (e.g., A + B) has that type.  */ +#define _GL_ADD_OVERFLOW(a, b, min, max)                                \ +  ((min) < 0 ? INT_ADD_RANGE_OVERFLOW (a, b, min, max)                  \ +   : (a) < 0 ? (b) <= (a) + (b)                                         \ +   : (b) < 0 ? (a) <= (a) + (b)                                         \ +   : (a) + (b) < (b)) +#define _GL_SUBTRACT_OVERFLOW(a, b, min, max)                           \ +  ((min) < 0 ? INT_SUBTRACT_RANGE_OVERFLOW (a, b, min, max)             \ +   : (a) < 0 ? 1                                                        \ +   : (b) < 0 ? (a) - (b) <= (a)                                         \ +   : (a) < (b)) +#define _GL_MULTIPLY_OVERFLOW(a, b, min, max)                           \ +  (((min) == 0 && (((a) < 0 && 0 < (b)) || ((b) < 0 && 0 < (a))))       \ +   || INT_MULTIPLY_RANGE_OVERFLOW (a, b, min, max)) +#define _GL_DIVIDE_OVERFLOW(a, b, min, max)                             \ +  ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max)  \ +   : (a) < 0 ? (b) <= (a) + (b) - 1                                     \ +   : (b) < 0 && (a) + (b) <= (a)) +#define _GL_REMAINDER_OVERFLOW(a, b, min, max)                          \ +  ((min) < 0 ? (b) == _GL_INT_NEGATE_CONVERT (min, 1) && (a) < - (max)  \ +   : (a) < 0 ? (a) % (b) != ((max) - (b) + 1) % (b)                     \ +   : (b) < 0 && ! _GL_UNSIGNED_NEG_MULTIPLE (a, b, max)) + +/* Return a nonzero value if A is a mathematical multiple of B, where +   A is unsigned, B is negative, and MAX is the maximum value of A's +   type.  A's type must be the same as (A % B)'s type.  Normally (A % +   -B == 0) suffices, but things get tricky if -B would overflow.  */ +#define _GL_UNSIGNED_NEG_MULTIPLE(a, b, max)                            \ +  (((b) < -_GL_SIGNED_INT_MAXIMUM (b)                                   \ +    ? (_GL_SIGNED_INT_MAXIMUM (b) == (max)                              \ +       ? (a)                                                            \ +       : (a) % (_GL_INT_CONVERT (a, _GL_SIGNED_INT_MAXIMUM (b)) + 1))   \ +    : (a) % - (b))                                                      \ +   == 0) + + +/* Integer overflow checks. + +   The INT_<op>_OVERFLOW macros return 1 if the corresponding C operators +   might not yield numerically correct answers due to arithmetic overflow. +   They work correctly on all known practical hosts, and do not rely +   on undefined behavior due to signed arithmetic overflow. + +   Example usage: + +     long int i = ...; +     long int j = ...; +     if (INT_MULTIPLY_OVERFLOW (i, j)) +       printf ("multiply would overflow"); +     else +       printf ("product is %ld", i * j); + +   These macros do not check for all possible numerical problems or +   undefined or unspecified behavior: they do not check for division +   by zero, for bad shift counts, or for shifting negative numbers. + +   These macros may evaluate their arguments zero or multiple times, so the +   arguments should not have side effects. + +   These macros are tuned for their last argument being a constant. + +   Return 1 if the integer expressions A * B, A - B, -A, A * B, A / B, +   A % B, and A << B would overflow, respectively.  */ + +#define INT_ADD_OVERFLOW(a, b) \ +  _GL_BINARY_OP_OVERFLOW (a, b, _GL_ADD_OVERFLOW) +#define INT_SUBTRACT_OVERFLOW(a, b) \ +  _GL_BINARY_OP_OVERFLOW (a, b, _GL_SUBTRACT_OVERFLOW) +#define INT_NEGATE_OVERFLOW(a) \ +  INT_NEGATE_RANGE_OVERFLOW (a, _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a)) +#define INT_MULTIPLY_OVERFLOW(a, b) \ +  _GL_BINARY_OP_OVERFLOW (a, b, _GL_MULTIPLY_OVERFLOW) +#define INT_DIVIDE_OVERFLOW(a, b) \ +  _GL_BINARY_OP_OVERFLOW (a, b, _GL_DIVIDE_OVERFLOW) +#define INT_REMAINDER_OVERFLOW(a, b) \ +  _GL_BINARY_OP_OVERFLOW (a, b, _GL_REMAINDER_OVERFLOW) +#define INT_LEFT_SHIFT_OVERFLOW(a, b) \ +  INT_LEFT_SHIFT_RANGE_OVERFLOW (a, b, \ +                                 _GL_INT_MINIMUM (a), _GL_INT_MAXIMUM (a)) + +/* Return 1 if the expression A <op> B would overflow, +   where OP_RESULT_OVERFLOW (A, B, MIN, MAX) does the actual test, +   assuming MIN and MAX are the minimum and maximum for the result type. +   Arguments should be free of side effects.  */ +#define _GL_BINARY_OP_OVERFLOW(a, b, op_result_overflow)        \ +  op_result_overflow (a, b,                                     \ +                      _GL_INT_MINIMUM (0 * (b) + (a)),          \ +                      _GL_INT_MAXIMUM (0 * (b) + (a))) -#endif /* GL_INTPROPS_H */ +#endif /* _GL_INTPROPS_H */ | 
