diff options
Diffstat (limited to 'tests/test-isnanl.h')
-rw-r--r-- | tests/test-isnanl.h | 154 |
1 files changed, 154 insertions, 0 deletions
diff --git a/tests/test-isnanl.h b/tests/test-isnanl.h new file mode 100644 index 00000000..baf04db0 --- /dev/null +++ b/tests/test-isnanl.h @@ -0,0 +1,154 @@ +/* Test of isnanl() substitute. + Copyright (C) 2007-2009 Free Software Foundation, Inc. + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +/* Written by Bruno Haible <bruno@clisp.org>, 2007. */ + +#include <float.h> +#include <limits.h> +#include <stdio.h> +#include <stdlib.h> + +#include "nan.h" + +#define ASSERT(expr) \ + do \ + { \ + if (!(expr)) \ + { \ + fprintf (stderr, "%s:%d: assertion failed\n", __FILE__, __LINE__); \ + fflush (stderr); \ + abort (); \ + } \ + } \ + while (0) + +/* On HP-UX 10.20, negating 0.0L does not yield -0.0L. + So we use minus_zero instead. + IRIX cc can't put -0.0L into .data, but can compute at runtime. + Note that the expression -LDBL_MIN * LDBL_MIN does not work on other + platforms, such as when cross-compiling to PowerPC on MacOS X 10.5. */ +#if defined __hpux || defined __sgi +static long double +compute_minus_zero (void) +{ + return -LDBL_MIN * LDBL_MIN; +} +# define minus_zero compute_minus_zero () +#else +long double minus_zero = -0.0L; +#endif + +int +main () +{ + #define NWORDS \ + ((sizeof (long double) + sizeof (unsigned int) - 1) / sizeof (unsigned int)) + typedef union { unsigned int word[NWORDS]; long double value; } + memory_long_double; + + /* Finite values. */ + ASSERT (!isnanl (3.141L)); + ASSERT (!isnanl (3.141e30L)); + ASSERT (!isnanl (3.141e-30L)); + ASSERT (!isnanl (-2.718L)); + ASSERT (!isnanl (-2.718e30L)); + ASSERT (!isnanl (-2.718e-30L)); + ASSERT (!isnanl (0.0L)); + ASSERT (!isnanl (minus_zero)); + /* Infinite values. */ + ASSERT (!isnanl (1.0L / 0.0L)); + ASSERT (!isnanl (-1.0L / 0.0L)); + /* Quiet NaN. */ + ASSERT (isnanl (NaNl ())); + +#if defined LDBL_EXPBIT0_WORD && defined LDBL_EXPBIT0_BIT + /* A bit pattern that is different from a Quiet NaN. With a bit of luck, + it's a Signalling NaN. */ + { + memory_long_double m; + m.value = NaNl (); +# if LDBL_EXPBIT0_BIT > 0 + m.word[LDBL_EXPBIT0_WORD] ^= (unsigned int) 1 << (LDBL_EXPBIT0_BIT - 1); +# else + m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)] + ^= (unsigned int) 1 << (sizeof (unsigned int) * CHAR_BIT - 1); +# endif + m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)] + |= (unsigned int) 1 << LDBL_EXPBIT0_BIT; + ASSERT (isnanl (m.value)); + } +#endif + +#if ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_)) +/* Representation of an 80-bit 'long double' as an initializer for a sequence + of 'unsigned int' words. */ +# ifdef WORDS_BIGENDIAN +# define LDBL80_WORDS(exponent,manthi,mantlo) \ + { ((unsigned int) (exponent) << 16) | ((unsigned int) (manthi) >> 16), \ + ((unsigned int) (manthi) << 16) | (unsigned int) (mantlo) >> 16), \ + (unsigned int) (mantlo) << 16 \ + } +# else +# define LDBL80_WORDS(exponent,manthi,mantlo) \ + { mantlo, manthi, exponent } +# endif + { /* Quiet NaN. */ + static memory_long_double x = + { LDBL80_WORDS (0xFFFF, 0xC3333333, 0x00000000) }; + ASSERT (isnanl (x.value)); + } + { + /* Signalling NaN. */ + static memory_long_double x = + { LDBL80_WORDS (0xFFFF, 0x83333333, 0x00000000) }; + ASSERT (isnanl (x.value)); + } + /* The isnanl function should recognize Pseudo-NaNs, Pseudo-Infinities, + Pseudo-Zeroes, Unnormalized Numbers, and Pseudo-Denormals, as defined in + Intel IA-64 Architecture Software Developer's Manual, Volume 1: + Application Architecture. + Table 5-2 "Floating-Point Register Encodings" + Figure 5-6 "Memory to Floating-Point Register Data Translation" + */ + { /* Pseudo-NaN. */ + static memory_long_double x = + { LDBL80_WORDS (0xFFFF, 0x40000001, 0x00000000) }; + ASSERT (isnanl (x.value)); + } + { /* Pseudo-Infinity. */ + static memory_long_double x = + { LDBL80_WORDS (0xFFFF, 0x00000000, 0x00000000) }; + ASSERT (isnanl (x.value)); + } + { /* Pseudo-Zero. */ + static memory_long_double x = + { LDBL80_WORDS (0x4004, 0x00000000, 0x00000000) }; + ASSERT (isnanl (x.value)); + } + { /* Unnormalized number. */ + static memory_long_double x = + { LDBL80_WORDS (0x4000, 0x63333333, 0x00000000) }; + ASSERT (isnanl (x.value)); + } + { /* Pseudo-Denormal. */ + static memory_long_double x = + { LDBL80_WORDS (0x0000, 0x83333333, 0x00000000) }; + ASSERT (isnanl (x.value)); + } +#endif + + return 0; +} |