/* Test of once-only execution in multithreaded situations. Copyright (C) 2005, 2008-2024 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* Written by Bruno Haible , 2005. */ #include #if USE_ISOC_THREADS || USE_POSIX_THREADS || USE_ISOC_AND_POSIX_THREADS || USE_WINDOWS_THREADS /* Whether to enable locking. Uncomment this to get a test program without locking, to verify that it crashes. */ #define ENABLE_LOCKING 1 /* Whether to help the scheduler through explicit sched_yield(). Uncomment this to see if the operating system has a fair scheduler. */ #define EXPLICIT_YIELD 1 /* Whether to print debugging messages. */ #define ENABLE_DEBUGGING 0 /* Number of simultaneous threads. */ #define THREAD_COUNT 10 /* Number of operations performed in each thread. This is quite high, because with a smaller count, say 5000, we often get an "OK" result even without ENABLE_LOCKING (on Linux/x86). */ #define REPEAT_COUNT 50000 #include #include #include #include #include #if EXPLICIT_YIELD # include #endif #if HAVE_DECL_ALARM # include # include #endif #include "macros.h" #if ENABLE_DEBUGGING # define dbgprintf printf #else # define dbgprintf if (0) printf #endif #if EXPLICIT_YIELD # define yield() sched_yield () #else # define yield() #endif /* Returns a reference to the current thread as a pointer, for debugging. */ #if defined __MVS__ /* On IBM z/OS, pthread_t is a struct with an 8-byte '__' field. The first three bytes of this field appear to uniquely identify a pthread_t, though not necessarily representing a pointer. */ # define pthread_self_pointer() (*((void **) pthread_self ().__)) #else # define pthread_self_pointer() ((void *) (uintptr_t) pthread_self ()) #endif /* ------------------------ Test once-only execution ------------------------ */ /* Test once-only execution by having several threads attempt to grab a once-only task simultaneously (triggered by releasing a read-write lock). */ static pthread_once_t fresh_once = PTHREAD_ONCE_INIT; static int ready[THREAD_COUNT]; static pthread_mutex_t ready_lock[THREAD_COUNT]; #if ENABLE_LOCKING static pthread_rwlock_t fire_signal[REPEAT_COUNT]; #else static volatile int fire_signal_state; #endif static pthread_once_t once_control; static int performed; static pthread_mutex_t performed_lock; static void once_execute (void) { ASSERT (pthread_mutex_lock (&performed_lock) == 0); performed++; ASSERT (pthread_mutex_unlock (&performed_lock) == 0); } static void * once_contender_thread (void *arg) { int id = (int) (intptr_t) arg; int repeat; for (repeat = 0; repeat <= REPEAT_COUNT; repeat++) { /* Tell the main thread that we're ready. */ ASSERT (pthread_mutex_lock (&ready_lock[id]) == 0); ready[id] = 1; ASSERT (pthread_mutex_unlock (&ready_lock[id]) == 0); if (repeat == REPEAT_COUNT) break; dbgprintf ("Contender %p waiting for signal for round %d\n", pthread_self_pointer (), repeat); #if ENABLE_LOCKING /* Wait for the signal to go. */ ASSERT (pthread_rwlock_rdlock (&fire_signal[repeat]) == 0); /* And don't hinder the others (if the scheduler is unfair). */ ASSERT (pthread_rwlock_unlock (&fire_signal[repeat]) == 0); #else /* Wait for the signal to go. */ while (fire_signal_state <= repeat) yield (); #endif dbgprintf ("Contender %p got the signal for round %d\n", pthread_self_pointer (), repeat); /* Contend for execution. */ ASSERT (pthread_once (&once_control, once_execute) == 0); } return NULL; } static void test_once (void) { int i, repeat; pthread_t threads[THREAD_COUNT]; /* Initialize all variables. */ for (i = 0; i < THREAD_COUNT; i++) { pthread_mutexattr_t attr; ready[i] = 0; ASSERT (pthread_mutexattr_init (&attr) == 0); ASSERT (pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_NORMAL) == 0); ASSERT (pthread_mutex_init (&ready_lock[i], &attr) == 0); ASSERT (pthread_mutexattr_destroy (&attr) == 0); } #if ENABLE_LOCKING for (i = 0; i < REPEAT_COUNT; i++) ASSERT (pthread_rwlock_init (&fire_signal[i], NULL) == 0); #else fire_signal_state = 0; #endif #if ENABLE_LOCKING /* Block all fire_signals. */ for (i = REPEAT_COUNT-1; i >= 0; i--) ASSERT (pthread_rwlock_wrlock (&fire_signal[i]) == 0); #endif /* Spawn the threads. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_create (&threads[i], NULL, once_contender_thread, (void *) (intptr_t) i) == 0); for (repeat = 0; repeat <= REPEAT_COUNT; repeat++) { /* Wait until every thread is ready. */ dbgprintf ("Main thread before synchronizing for round %d\n", repeat); for (;;) { int ready_count = 0; for (i = 0; i < THREAD_COUNT; i++) { ASSERT (pthread_mutex_lock (&ready_lock[i]) == 0); ready_count += ready[i]; ASSERT (pthread_mutex_unlock (&ready_lock[i]) == 0); } if (ready_count == THREAD_COUNT) break; yield (); } dbgprintf ("Main thread after synchronizing for round %d\n", repeat); if (repeat > 0) { /* Check that exactly one thread executed the once_execute() function. */ if (performed != 1) abort (); } if (repeat == REPEAT_COUNT) break; /* Preparation for the next round: Initialize once_control. */ memcpy (&once_control, &fresh_once, sizeof (pthread_once_t)); /* Preparation for the next round: Reset the performed counter. */ performed = 0; /* Preparation for the next round: Reset the ready flags. */ for (i = 0; i < THREAD_COUNT; i++) { ASSERT (pthread_mutex_lock (&ready_lock[i]) == 0); ready[i] = 0; ASSERT (pthread_mutex_unlock (&ready_lock[i]) == 0); } /* Signal all threads simultaneously. */ dbgprintf ("Main thread giving signal for round %d\n", repeat); #if ENABLE_LOCKING ASSERT (pthread_rwlock_unlock (&fire_signal[repeat]) == 0); #else fire_signal_state = repeat + 1; #endif } /* Wait for the threads to terminate. */ for (i = 0; i < THREAD_COUNT; i++) ASSERT (pthread_join (threads[i], NULL) == 0); } /* -------------------------------------------------------------------------- */ int main () { #if HAVE_DECL_ALARM /* Declare failure if test takes too long, by using default abort caused by SIGALRM. */ int alarm_value = 600; signal (SIGALRM, SIG_DFL); alarm (alarm_value); #endif { pthread_mutexattr_t attr; ASSERT (pthread_mutexattr_init (&attr) == 0); ASSERT (pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_NORMAL) == 0); ASSERT (pthread_mutex_init (&performed_lock, &attr) == 0); ASSERT (pthread_mutexattr_destroy (&attr) == 0); } printf ("Starting test_once ..."); fflush (stdout); test_once (); printf (" OK\n"); fflush (stdout); return test_exit_status; } #else /* No multithreading available. */ #include int main () { fputs ("Skipping test: multithreading not enabled\n", stderr); return 77; } #endif