/* sane - Scanner Access Now Easy. This file (C) 1997 Ingo Schneider (C) 1998 Karl Anders �ygard This file is part of the SANE package. SANE is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. SANE is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with sane; see the file COPYING. If not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. This file implements a SANE backend for AGFA Focus flatbed scanners. */ #include "../include/sane/config.h" #include <signal.h> #include <errno.h> #include <fcntl.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <sys/types.h> #include "../include/sane/sane.h" #include "../include/sane/sanei.h" #include "../include/sane/sanei_config.h" #include "../include/sane/saneopts.h" #include "../include/sane/sanei_scsi.h" #include "../include/sane/sanei_thread.h" #define BACKEND_NAME agfafocus #include "../include/sane/sanei_backend.h" #include "agfafocus.h" #ifndef PATH_MAX # define PATH_MAX 1024 #endif #undef Byte #define Byte SANE_Byte static int num_devices; static AgfaFocus_Device *agfafocus_devices; static const SANE_String_Const focus_mode_list[] = { "Lineart", "Gray (6 bit)", 0 }; static const SANE_String_Const focusii_mode_list[] = { "Lineart", "Gray (6 bit)", "Gray (8 bit)", 0 }; static const SANE_String_Const focuscolor_mode_list[] = { "Lineart", "Gray (6 bit)", "Gray (8 bit)", "Color (18 bit)", "Color (24 bit)", 0 }; static const SANE_String_Const halftone_list[] = { "None", "Dispersed dot 4x4", "Round (Clustered dot 4x4)", "Diamond (Clustered dot 4x4)", 0 }; static const SANE_String_Const halftone_upload_list[] = { "None", "Dispersed dot 4x4", "Round (Clustered dot 4x4)", "Diamond (Clustered dot 4x4)", 0 }; static const SANE_String_Const source_list[] = { "Opaque/Normal", "Transparency", 0 }; static const SANE_String_Const quality_list[] = { "Low", "Normal", "High", 0 }; static size_t max_string_size (const SANE_String_Const strings[]) { size_t size, max_size = 0; int i; DBG (11, ">> max_string_size\n"); for (i = 0; strings[i]; ++i) { size = strlen (strings[i]) + 1; if (size > max_size) max_size = size; } DBG (11, "<< max_string_size\n"); return max_size; } /* sets loc_s bytes long value at offset loc in scsi command to value size */ static void set_size (Byte * loc, int loc_s, size_t size) { int i; for (i = 0; i < loc_s; i++) { loc[loc_s - i - 1] = (size >> (i * 8)) & 0xff; } } /* gets loc_s bytes long value from loc in scsi command */ static int get_size (Byte * loc, int loc_s) { int i; int j = 0; for (i = 0; i < loc_s; i++) { j = (j << 8) + (loc[i] & 0xff); } return j; } static long reserve_unit (int fd) { struct { /* Command */ Byte cmd; Byte lun; Byte res[2]; Byte tr_len; Byte ctrl; } scsi_reserve; memset (&scsi_reserve, 0, sizeof (scsi_reserve)); scsi_reserve.cmd = 0x16; /* RELEASE */ DBG (3, "reserve_unit()\n"); return sanei_scsi_cmd (fd, &scsi_reserve, sizeof (scsi_reserve), 0, 0); } static long release_unit (int fd) { struct { /* Command */ Byte cmd; Byte lun; Byte res[2]; Byte tr_len; Byte ctrl; } scsi_release; memset (&scsi_release, 0, sizeof (scsi_release)); scsi_release.cmd = 0x17; /* RELEASE */ DBG (3, "release_unit()\n"); return sanei_scsi_cmd (fd, &scsi_release, sizeof (scsi_release), 0, 0); } static SANE_Status test_ready (int fd) { SANE_Status status; int try; struct { /* Command */ Byte cmd; Byte lun; Byte res[2]; Byte tr_len; Byte ctrl; } scsi_test_ready; memset (&scsi_test_ready, 0, sizeof (scsi_test_ready)); scsi_test_ready.cmd = 0x00; /* TEST UNIT READY */ for (try = 0; try < 1000; ++try) { DBG (3, "test_ready: sending TEST_UNIT_READY\n"); status = sanei_scsi_cmd (fd, &scsi_test_ready, sizeof (scsi_test_ready), 0, 0); switch (status) { case SANE_STATUS_DEVICE_BUSY: usleep (100000); /* retry after 100ms */ break; case SANE_STATUS_GOOD: return status; default: DBG (1, "test_ready: test unit ready failed (%s)\n", sane_strstatus (status)); return status; } } DBG (1, "test_ready: timed out after %d attempts\n", try); return SANE_STATUS_IO_ERROR; } static SANE_Status sense_handler (int scsi_fd, u_char *result, void *arg) { scsi_fd = scsi_fd; /* silence gcc */ arg = arg; /* silence gcc */ if (result[0]) { DBG (0, "sense_handler() : sense code = %02x\n", result[0]); return SANE_STATUS_IO_ERROR; } else { return SANE_STATUS_GOOD; } } static SANE_Status stop_scan (int fd) { fd = fd; /* silence gcc */ /* XXX don't know how to stop the scanner. To be tested ! */ #if 0 const Byte scsi_rewind[] = { 0x01, 0x00, 0x00, 0x00, 0x00, 0x00 }; DBG (1, "Trying to stop scanner...\n"); return sanei_scsi_cmd (fd, scsi_rewind, sizeof (scsi_rewind), 0, 0); #else return SANE_STATUS_GOOD; #endif } static SANE_Status start_scan (int fd, SANE_Bool cont) { struct { /* Command */ Byte cmd; Byte lun; Byte res[2]; Byte tr_len; Byte ctrl; /* Data */ Byte wid; } scsi_start_scan; memset (&scsi_start_scan, 0, sizeof (scsi_start_scan)); scsi_start_scan.cmd = 0x1b; /* SCAN */ scsi_start_scan.tr_len = 1; scsi_start_scan.wid = 0; scsi_start_scan.ctrl = (cont == SANE_TRUE) ? 0x80 : 0x00; DBG (1, "Starting scanner ...\n"); return sanei_scsi_cmd (fd, &scsi_start_scan, sizeof (scsi_start_scan), 0, 0); } static void wait_ready (int fd) { struct { Byte bytes[2]; /* Total # of bytes */ Byte scan[2]; /* ms to complete - driver sleep time */ } result; size_t size = sizeof (result); SANE_Status status; struct { Byte cmd; Byte lun; Byte data_type; Byte re1[3]; Byte tr_len[3]; Byte ctrl; } cmd; memset (&cmd, 0, sizeof (cmd)); cmd.cmd = 0x28; /* READ */ cmd.data_type = 0x80; /* get scan time */ set_size (cmd.tr_len, 3, sizeof (result)); while (1) { status = sanei_scsi_cmd (fd, &cmd, sizeof (cmd), &result, &size); if (status != SANE_STATUS_GOOD || size != sizeof (result)) { /* Command failed, the assembler code of the windows scan library ignores this condition, and so do I */ break; } else { /* left is the amount of seconds left till the scanner is ready * 100 */ int left = get_size (result.scan, 2); DBG (1, "wait_ready() : %d left...\n", left); if (!left) break; /* We delay only for half the given time */ else if (left < 200) usleep (left * 5000); else sleep (left / 200); } } return; } static SANE_Status get_read_sizes (int fd, int *lines_available, int *bpl, int *total_lines) { struct { Byte reserved1[8]; Byte line_width[2]; Byte total_lines[2]; Byte cur_line[2]; Byte lines_this_block[2]; Byte reserved[8]; } read_sizes; const Byte scsi_read[] = { 0x28, 0x00, /* opcode, lun */ 0x81, /* data type 81 == read time left */ 0x00, 0x00, 0x00, /* reserved */ 0x00, 0x00, sizeof (read_sizes), /* transfer length */ 0x00, /* control byte */ }; size_t size = sizeof (read_sizes); SANE_Status status; status = sanei_scsi_cmd (fd, scsi_read, sizeof (scsi_read), &read_sizes, &size); if (status != SANE_STATUS_GOOD || size != sizeof (read_sizes)) { /* Command failed */ return SANE_STATUS_IO_ERROR; } else { *lines_available = get_size (read_sizes.lines_this_block, 2); *bpl = get_size (read_sizes.cur_line, 2); if (total_lines) *total_lines = get_size (read_sizes.total_lines, 2); } DBG (1, "get_read_sizes() : %d of %d, %d\n", *lines_available, total_lines ? *total_lines : -1, *bpl); return SANE_STATUS_GOOD; } static SANE_Status set_window (AgfaFocus_Scanner * s) /* This function sets and sends the window for scanning */ { double pixels_per_mm = (double) s->val[OPT_RESOLUTION].w / MM_PER_INCH; SANE_Bool auto_bright = s->val[OPT_AUTO_BRIGHTNESS].b; SANE_Bool auto_contr = s->val[OPT_AUTO_CONTRAST].b; /* ranges down 255 (dark) down to 1(bright) */ int brightness = auto_bright ? 0 : (SANE_UNFIX (s->val[OPT_BRIGHTNESS].w) * -1.27 + 128.5); /* ranges from 1 (little contrast) up to 255 (much contrast) */ int contrast = auto_contr ? 0 : (SANE_UNFIX (s->val[OPT_CONTRAST].w) * 1.27 + 128.5); int width; /* ranges from 40 (dark) down to 0 (bright) */ int bright_adjust = (SANE_UNFIX (s->val[OPT_BRIGHTNESS].w) * -20.0) / 100.0 + 20.0; /* ranges from 20 (little contrast) down to -20 = 235 (much contrast) */ int contr_adjust = (SANE_UNFIX (s->val[OPT_CONTRAST].w) * -20.0) / 100.0; /* Warning ! The following structur SEEMS to be a valid SCSI-2 SET_WINDOW command. But e.g. the limits for the window are only 2 Bytes instead of 4. The scanner was built at about 1990, so SCSI-2 wasn't available for development... */ struct { Byte cmd; Byte lun; Byte re1[4]; Byte tr_len[3]; Byte ctrl; Byte re2[6]; Byte wd_len[2]; struct { Byte wid; /* Window ID */ Byte autobit; /* Window creation */ Byte x_axis_res[2]; /* X resolution */ Byte y_axis_res[2]; /* X resolution */ Byte x_axis_ul[2]; /* X upper left */ Byte y_axis_ul[2]; /* Y upper left */ Byte wwidth[2]; /* Width */ Byte wlength[2]; /* Length */ Byte contrast; /* Contrast */ Byte dummy1; Byte intensity; /* Intensity */ Byte image_comp; /* Image composition (0, 2, 5) */ Byte bpp; /* Bits per pixel */ Byte tonecurve; /* Tone curve (0 - 8) */ Byte ht_pattern; /* Halftone pattern */ Byte paddingtype; /* Padding type */ Byte bitordering[2]; /* Bit ordering (0 = left to right) */ Byte comprtype; /* Compression type */ Byte comprarg; /* Compression argument */ Byte dummy2[6]; Byte edge; /* Sharpening (0 - 7) */ Byte dummy3; Byte bright_adjust; /* */ Byte contr_adjust; /* */ Byte imagewidthtruncation; /* */ Byte dummy4; Byte quality_type; /* 0 normal, 1 high, 255 low */ Byte red_att; Byte green_att; Byte blue_att; Byte dummy5[5]; Byte color_planes; Byte orig_type; Byte fixturetype; Byte exposure[2]; Byte defocus[2]; Byte dummy6[4]; Byte descreen_factor; Byte packing_word_length; Byte packing_number_of_pixels; Byte packing_color_mode; Byte strokenab; Byte rotatenab; Byte autostrokenab; Byte dummy7; } wd; } cmd; memset (&cmd, 0, sizeof (cmd)); cmd.cmd = 0x24; /* SET WINDOW PARAMETERS */ switch (s->hw->type) { case AGFAGRAY64: case AGFALINEART: case AGFAGRAY256: set_size (cmd.tr_len, 3, 36 + 8); set_size (cmd.wd_len, 2, 36); break; case AGFACOLOR: set_size (cmd.tr_len, 3, 65 + 8); set_size (cmd.wd_len, 2, 65); break; } /* Resolution. Original comment in German: Aufloesung */ set_size (cmd.wd.x_axis_res, 2, s->val[OPT_RESOLUTION].w); set_size (cmd.wd.y_axis_res, 2, s->val[OPT_RESOLUTION].w); /* Scan window position/size. Original comment in German: Fensterposition / Groesse */ set_size (cmd.wd.x_axis_ul, 2, SANE_UNFIX (s->val[OPT_TL_X].w) * pixels_per_mm + 0.5); set_size (cmd.wd.y_axis_ul, 2, SANE_UNFIX (s->val[OPT_TL_Y].w) * pixels_per_mm + 0.5); width = (SANE_UNFIX (s->val[OPT_BR_X].w - s->val[OPT_TL_X].w) * pixels_per_mm) + 0.5; if (s->bpp == 1 && width % 8) width += 8 - width % 8; set_size (cmd.wd.wwidth, 2, width); set_size (cmd.wd.wlength, 2, SANE_UNFIX (s->val[OPT_BR_Y].w - s->val[OPT_TL_Y].w) * pixels_per_mm + 0.5); cmd.wd.bpp = s->bpp; if (s->mode == COLOR18BIT || s->mode == COLOR24BIT) { cmd.wd.paddingtype = 3; cmd.wd.ht_pattern = 3; cmd.wd.red_att = s->r_att; cmd.wd.blue_att = s->g_att; cmd.wd.green_att = s->b_att; cmd.wd.color_planes = 0x0e; set_size (cmd.wd.exposure, 2, s->exposure); cmd.wd.packing_word_length = 1; cmd.wd.packing_number_of_pixels = 1; cmd.wd.packing_color_mode = 2; if (s->bpp == 6) cmd.wd.edge = s->edge; DBG (3, "Setting parameters: imc %d, bpp %d, res %d, exp %d, attenuation [%d, %d, %d], edge %d\n", s->image_composition, s->bpp, s->val[OPT_RESOLUTION].w, s->exposure, cmd.wd.red_att, cmd.wd.blue_att, cmd.wd.green_att, s->edge); } else { if (s->bpp == 1) cmd.wd.ht_pattern = s->halftone; else cmd.wd.ht_pattern = 3; cmd.wd.intensity = brightness; cmd.wd.contrast = contrast; cmd.wd.contr_adjust = contr_adjust; cmd.wd.bright_adjust = bright_adjust; cmd.wd.tonecurve = s->tonecurve; cmd.wd.paddingtype = 3; cmd.wd.edge = s->edge; if (s->lin_log) cmd.wd.dummy3 = 0x02; DBG (3, "Setting parameters: imc %d, bpp %d, res %d, bri %d, con %d, bad %d, cad %d, ht %d, edge %d\n", s->image_composition, s->bpp, s->val[OPT_RESOLUTION].w, brightness, contrast, bright_adjust, contr_adjust, s->halftone, s->edge); } cmd.wd.image_comp = s->image_composition; cmd.wd.quality_type = s->quality; cmd.wd.orig_type = s->original; return sanei_scsi_cmd (s->fd, &cmd, sizeof (cmd), 0, 0); } /* Tell scanner to scan more data. */ static SANE_Status request_more_data (AgfaFocus_Scanner * s) { SANE_Status status; int lines_available; int bytes_per_line; status = start_scan (s->fd, SANE_TRUE); if (status != SANE_STATUS_GOOD) return status; if (!s->hw->disconnect) wait_ready (s->fd); status = get_read_sizes (s->fd, &lines_available, &bytes_per_line, 0); if (!lines_available) return SANE_STATUS_INVAL; s->lines_available = lines_available; return SANE_STATUS_GOOD; } static SANE_Status upload_dither_matrix (AgfaFocus_Scanner * s, int rows, int cols, int *dither_matrix) { struct { Byte cmd; Byte lun; Byte data_type; Byte re1[3]; Byte tr_len[3]; Byte ctrl; struct { Byte nrrows[2]; Byte nrcols[2]; struct { Byte data[2]; } element[256]; } wd; } cmd; SANE_Status status; int i; memset (&cmd, 0, sizeof (cmd)); cmd.cmd = 0x2a; /* WRITE */ cmd.data_type = 0x81; /* upload dither matrix */ set_size (cmd.tr_len, 3, 4 + (2 * rows * cols)); set_size (cmd.wd.nrrows, 2, rows); set_size (cmd.wd.nrcols, 2, cols); for (i = 0; i < cols * rows; ++i) set_size (cmd.wd.element[i].data, 2, dither_matrix[i]); status = sanei_scsi_cmd (s->fd, &cmd, sizeof (cmd), 0, 0); if (status != SANE_STATUS_GOOD) /* Command failed */ return SANE_STATUS_IO_ERROR; DBG (1, "upload_dither_matrix(): uploaded dither matrix: %d, %d\n", rows, cols); return SANE_STATUS_GOOD; } #if 0 static SANE_Status upload_tonecurve (AgfaFocus_Scanner * s, int color_type, int input, int output, int dither_matrix[256]) { struct { Byte cmd; Byte lun; Byte re1[4]; Byte tr_len[3]; Byte ctrl; Byte re2[6]; Byte wd_len[2]; struct { Byte color_type[2]; Byte nrinput[2]; Byte nroutput[2]; struct { Byte data[2]; } outputval[256]; } wd; } cmd; SANE_Status status; int i, j; memset (&cmd, 0, sizeof (cmd)); cmd.cmd = 0x80; set_size (cmd.tr_len, 3, sizeof (cmd.wd)); set_size (cmd.wd.nrrows, 2, rows); set_size (cmd.wd.nrrows, 2, cols); for (i = 0; i < cols; ++i) for (j = 0; j < rows; ++j) set_size (cmd.wd.element[j + i * rows].data, 2, dither_matrix[j + i * rows]); status = sanei_scsi_cmd (s->fd, &cmd, sizeof (cmd), 0, 0); if (status != SANE_STATUS_GOOD) /* * Command failed * */ return SANE_STATUS_IO_ERROR; DBG (1, "upload_dither_matrix(): uploaded dither matrix\n"); return SANE_STATUS_GOOD; } #endif /* May only be called when there is at least one row of data to be read. Original comment in German: Darf nur aufgerufen werden, wenn wirklich noch Zeilen zu scannen/lesen sind ! */ static SANE_Status read_data (AgfaFocus_Scanner * s, SANE_Byte *buf, int lines, int bpl) { struct { Byte cmd; Byte lun; Byte re1[4]; Byte tr_len[3]; Byte ctrl; } cmd; SANE_Status status; size_t size; unsigned int i; memset (&cmd, 0, sizeof (cmd)); cmd.cmd = 0x28; /* READ */ set_size (cmd.tr_len, 3, lines); size = lines * bpl; status = sanei_scsi_cmd (s->fd, &cmd, sizeof (cmd), buf, &size); if (status != SANE_STATUS_GOOD) { DBG (1, "sanei_scsi_cmd() = %d\n", status); return SANE_STATUS_IO_ERROR; } if (size != ((unsigned int) lines * bpl)) { DBG (1, "sanei_scsi_cmd(): got %lu bytes, expected %d\n", (u_long) size, lines * bpl); return SANE_STATUS_INVAL; } DBG (1, "Got %lu bytes\n", (u_long) size); /* Reverse: */ if (s->bpp != 1) { if (s->bpp != 6) for (i = 0; i < size; i++) buf[i] = 255 - buf[i]; else for (i = 0; i < size; i++) buf[i] = 255 - ((buf[i] * 256.0f) / 64.0f); } s->lines_available -= lines; return SANE_STATUS_GOOD; } static SANE_Status attach (const char *devname, AgfaFocus_Device ** devp) { #define ATTACH_SCSI_INQ_LEN 55 const Byte scsi_inquiry[] = { 0x12, 0x00, 0x00, 0x00, ATTACH_SCSI_INQ_LEN, 0x00 }; Byte result[ATTACH_SCSI_INQ_LEN]; int fd; AgfaFocus_Device *dev; SANE_Status status; size_t size; int i; for (dev = agfafocus_devices; dev; dev = dev->next) if (strcmp (dev->sane.name, devname) == 0) { if (devp) *devp = dev; return SANE_STATUS_GOOD; } DBG (3, "attach: opening %s\n", devname); status = sanei_scsi_open (devname, &fd, sense_handler, 0); if (status != SANE_STATUS_GOOD) { DBG (1, "attach: open failed (%s)\n", sane_strstatus (status)); return SANE_STATUS_INVAL; } DBG (4, "attach: sending INQUIRY\n"); size = sizeof (result); status = sanei_scsi_cmd (fd, scsi_inquiry, sizeof (scsi_inquiry), result, &size); if (status != SANE_STATUS_GOOD || size != ATTACH_SCSI_INQ_LEN) { DBG (1, "attach: inquiry failed (%s)\n", sane_strstatus (status)); sanei_scsi_close (fd); return status; } status = test_ready (fd); sanei_scsi_close (fd); if (status != SANE_STATUS_GOOD) return status; /* The structure send by the scanner after inquiry is not SCSI-2 compatible. The standard manufacturer/model fields are no ASCII strings, but ? At offset 36 my SIEMENS scanner identifies as an AGFA one ?! */ if (result[0] != 6 || strncmp ((char *)result + 36, "AGFA0", 5)) { DBG (1, "attach: device doesn't look like a Siemens 9036 scanner\n"); return SANE_STATUS_INVAL; } DBG (4, "Inquiry data:\n"); DBG (4, "-----------\n"); for (i = 5; i < 55; i += 10) DBG (4, "%02x %02x %02x %02x %02x %02x %02x %02x %02x %02x\n", result[i], result[i + 1], result[i + 2], result[i + 3], result[i + 4], result[i + 5], result[i + 6], result[i + 7], result[i + 8], result[i + 9]); dev = malloc (sizeof (*dev)); if (!dev) return SANE_STATUS_NO_MEM; memset (dev, 0, sizeof (*dev)); dev->sane.name = strdup (devname); if (!strncmp ((char *)result + 36, "AGFA01", 6)) { dev->sane.vendor = "AGFA"; dev->sane.model = "Focus GS Scanner (6 bit)"; dev->upload_user_defines = SANE_TRUE; dev->type = AGFAGRAY64; } else if (!strncmp ((char *)result + 36, "AGFA02", 6)) { dev->sane.vendor = "AGFA"; dev->sane.model = "Focus Lineart Scanner"; dev->upload_user_defines = SANE_FALSE; dev->type = AGFALINEART; } else if (!strncmp ((char *)result + 36, "AGFA03", 6)) { dev->sane.vendor = "AGFA"; dev->sane.model = "Focus II"; dev->upload_user_defines = SANE_TRUE; dev->type = AGFAGRAY256; } else if (!strncmp ((char *)result + 36, "AGFA04", 6)) { dev->sane.vendor = "AGFA"; dev->sane.model = "Focus Color"; dev->upload_user_defines = SANE_TRUE; dev->type = AGFACOLOR; } else { free (dev); DBG (1, "attach: device looks like an AGFA scanner, but wasn't recognised\n"); return SANE_STATUS_INVAL; } dev->sane.type = "flatbed scanner"; dev->transparent = result[45] & 0x80 ? SANE_TRUE : SANE_FALSE; dev->analoglog = result[46] & 0x80 ? SANE_TRUE : SANE_FALSE; dev->tos5 = result[46] & 0x05 ? SANE_TRUE : SANE_FALSE; dev->quality = result[47] & 0x40 ? SANE_TRUE : SANE_FALSE; dev->disconnect = result[47] & 0x80 ? SANE_TRUE : SANE_FALSE; DBG (4, "\n"); DBG (4, "scan modes:\n"); DBG (4, "-----------\n"); DBG (4, "three pass color mode: %s\n", dev->type >= AGFACOLOR ? "yes" : "no"); DBG (4, "8 bit gray mode: %s\n", dev->type >= AGFAGRAY64 ? "yes" : "no"); DBG (4, "uploadable matrices: %s\n", dev->upload_user_defines ? "yes" : "no"); DBG (4, "transparency: %s\n", dev->transparent ? "yes" : "no"); DBG (4, "disconnect: %s\n", dev->disconnect ? "yes" : "no"); DBG (4, "quality calibration: %s\n", dev->quality ? "yes" : "no"); dev->handle = 0; DBG (3, "attach: found AgfaFocus scanner model\n"); ++num_devices; dev->next = agfafocus_devices; agfafocus_devices = dev; if (devp) *devp = dev; return SANE_STATUS_GOOD; } static SANE_Status do_eof (AgfaFocus_Scanner *s) { if (s->pipe >= 0) { close (s->pipe); s->pipe = -1; } return SANE_STATUS_EOF; } static SANE_Status do_cancel (AgfaFocus_Scanner * s) { s->scanning = SANE_FALSE; s->pass = 0; do_eof (s); if (s->reader_pid != -1) { int exit_status; /* ensure child knows it's time to stop: */ sanei_thread_kill (s->reader_pid); sanei_thread_waitpid (s->reader_pid, &exit_status); s->reader_pid = -1; } if (s->fd >= 0) { stop_scan (s->fd); release_unit (s->fd); sanei_scsi_close (s->fd); s->fd = -1; } return SANE_STATUS_CANCELLED; } static SANE_Status init_options (AgfaFocus_Scanner * s) { int i; /* Hardware Limitations: must be static ! */ static const SANE_Int dpi_list[] = {8, 100, 200, 300, 400, 500, 600, 700, 800}; static const SANE_Range percentage_range = { -100 << SANE_FIXED_SCALE_SHIFT, /* minimum */ 100 << SANE_FIXED_SCALE_SHIFT, /* maximum */ 1 << SANE_FIXED_SCALE_SHIFT /* quantization */ }; static const SANE_Range sharpen_range = {0, 7, 1}; static const SANE_Range exposure_range = {0, 100, 0}; static const SANE_Range attenuation_range = { 0 << SANE_FIXED_SCALE_SHIFT, /* minimum */ 100 << SANE_FIXED_SCALE_SHIFT, /* maximum */ 1 << SANE_FIXED_SCALE_SHIFT /* quantization */ }; static const SANE_Range x_range = {0, SANE_FIX (8.27 * MM_PER_INCH), 0}; static const SANE_Range y_range = {0, SANE_FIX (12.72 * MM_PER_INCH), 0}; /* ------ */ memset (s->opt, 0, sizeof (s->opt)); memset (s->val, 0, sizeof (s->val)); for (i = 0; i < NUM_OPTIONS; ++i) { s->opt[i].size = sizeof (SANE_Word); s->opt[i].cap = SANE_CAP_SOFT_SELECT | SANE_CAP_SOFT_DETECT; } s->opt[OPT_NUM_OPTS].title = SANE_TITLE_NUM_OPTIONS; s->opt[OPT_NUM_OPTS].desc = SANE_DESC_NUM_OPTIONS; s->opt[OPT_NUM_OPTS].type = SANE_TYPE_INT; s->opt[OPT_NUM_OPTS].cap = SANE_CAP_SOFT_DETECT; s->val[OPT_NUM_OPTS].w = NUM_OPTIONS; /* "Mode" group: */ s->opt[OPT_MODE_GROUP].title = "Scan Mode"; s->opt[OPT_MODE_GROUP].desc = ""; s->opt[OPT_MODE_GROUP].type = SANE_TYPE_GROUP; s->opt[OPT_MODE_GROUP].cap = 0; s->opt[OPT_MODE_GROUP].constraint_type = SANE_CONSTRAINT_NONE; /* scan mode */ s->opt[OPT_MODE].name = SANE_NAME_SCAN_MODE; s->opt[OPT_MODE].title = SANE_TITLE_SCAN_MODE; s->opt[OPT_MODE].desc = SANE_DESC_SCAN_MODE; s->opt[OPT_MODE].type = SANE_TYPE_STRING; switch (s->hw->type) { case AGFACOLOR: s->opt[OPT_MODE].size = max_string_size (focuscolor_mode_list); s->opt[OPT_MODE].constraint.string_list = focuscolor_mode_list; s->val[OPT_MODE].s = strdup (focuscolor_mode_list[0]); break; case AGFAGRAY256: s->opt[OPT_MODE].size = max_string_size (focusii_mode_list); s->opt[OPT_MODE].constraint.string_list = focusii_mode_list; s->val[OPT_MODE].s = strdup (focusii_mode_list[0]); break; default: s->opt[OPT_MODE].size = max_string_size (focus_mode_list); s->opt[OPT_MODE].constraint.string_list = focus_mode_list; s->val[OPT_MODE].s = strdup (focus_mode_list[0]); break; } s->opt[OPT_MODE].constraint_type = SANE_CONSTRAINT_STRING_LIST; /* resolution */ s->opt[OPT_RESOLUTION].name = SANE_NAME_SCAN_RESOLUTION; s->opt[OPT_RESOLUTION].title = SANE_TITLE_SCAN_RESOLUTION; s->opt[OPT_RESOLUTION].desc = SANE_DESC_SCAN_RESOLUTION; s->opt[OPT_RESOLUTION].type = SANE_TYPE_INT; s->opt[OPT_RESOLUTION].unit = SANE_UNIT_DPI; s->opt[OPT_RESOLUTION].constraint_type = SANE_CONSTRAINT_WORD_LIST; s->opt[OPT_RESOLUTION].constraint.word_list = dpi_list; s->val[OPT_RESOLUTION].w = 100; s->opt[OPT_SOURCE].name = SANE_NAME_SCAN_SOURCE; s->opt[OPT_SOURCE].title = SANE_TITLE_SCAN_SOURCE; s->opt[OPT_SOURCE].desc = SANE_DESC_SCAN_SOURCE; s->opt[OPT_SOURCE].type = SANE_TYPE_STRING; s->opt[OPT_SOURCE].unit = SANE_UNIT_NONE; if (!s->hw->transparent) s->opt[OPT_SOURCE].cap |= SANE_CAP_INACTIVE; else s->opt[OPT_SOURCE].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_SOURCE].constraint_type = SANE_CONSTRAINT_STRING_LIST; s->opt[OPT_SOURCE].constraint.string_list = source_list; s->opt[OPT_SOURCE].size = max_string_size (source_list); s->val[OPT_SOURCE].s = strdup (source_list[0]); /* "Geometry" group: */ s->opt[OPT_GEOMETRY_GROUP].title = "Geometry"; s->opt[OPT_GEOMETRY_GROUP].desc = ""; s->opt[OPT_GEOMETRY_GROUP].type = SANE_TYPE_GROUP; s->opt[OPT_GEOMETRY_GROUP].cap = SANE_CAP_ADVANCED; s->opt[OPT_GEOMETRY_GROUP].constraint_type = SANE_CONSTRAINT_NONE; /* top-left x */ s->opt[OPT_TL_X].name = SANE_NAME_SCAN_TL_X; s->opt[OPT_TL_X].title = SANE_TITLE_SCAN_TL_X; s->opt[OPT_TL_X].desc = SANE_DESC_SCAN_TL_X; s->opt[OPT_TL_X].type = SANE_TYPE_FIXED; s->opt[OPT_TL_X].unit = SANE_UNIT_MM; s->opt[OPT_TL_X].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_TL_X].constraint.range = &x_range; s->val[OPT_TL_X].w = 0; /* top-left y */ s->opt[OPT_TL_Y].name = SANE_NAME_SCAN_TL_Y; s->opt[OPT_TL_Y].title = SANE_TITLE_SCAN_TL_Y; s->opt[OPT_TL_Y].desc = SANE_DESC_SCAN_TL_Y; s->opt[OPT_TL_Y].type = SANE_TYPE_FIXED; s->opt[OPT_TL_Y].unit = SANE_UNIT_MM; s->opt[OPT_TL_Y].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_TL_Y].constraint.range = &y_range; s->val[OPT_TL_Y].w = 0; /* bottom-right x */ s->opt[OPT_BR_X].name = SANE_NAME_SCAN_BR_X; s->opt[OPT_BR_X].title = SANE_TITLE_SCAN_BR_X; s->opt[OPT_BR_X].desc = SANE_DESC_SCAN_BR_X; s->opt[OPT_BR_X].type = SANE_TYPE_FIXED; s->opt[OPT_BR_X].unit = SANE_UNIT_MM; s->opt[OPT_BR_X].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_BR_X].constraint.range = &x_range; s->val[OPT_BR_X].w = x_range.max; /* bottom-right y */ s->opt[OPT_BR_Y].name = SANE_NAME_SCAN_BR_Y; s->opt[OPT_BR_Y].title = SANE_TITLE_SCAN_BR_Y; s->opt[OPT_BR_Y].desc = SANE_DESC_SCAN_BR_Y; s->opt[OPT_BR_Y].type = SANE_TYPE_FIXED; s->opt[OPT_BR_Y].unit = SANE_UNIT_MM; s->opt[OPT_BR_Y].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_BR_Y].constraint.range = &y_range; s->val[OPT_BR_Y].w = y_range.max; /* "Enhancement" group: */ s->opt[OPT_ENHANCEMENT_GROUP].title = "Enhancement"; s->opt[OPT_ENHANCEMENT_GROUP].desc = ""; s->opt[OPT_ENHANCEMENT_GROUP].type = SANE_TYPE_GROUP; s->opt[OPT_ENHANCEMENT_GROUP].cap = 0; s->opt[OPT_ENHANCEMENT_GROUP].constraint_type = SANE_CONSTRAINT_NONE; /* exposure */ s->opt[OPT_EXPOSURE].name = "exposure"; s->opt[OPT_EXPOSURE].title = "Exposure"; s->opt[OPT_EXPOSURE].desc = "Analog exposure control."; s->opt[OPT_EXPOSURE].type = SANE_TYPE_INT; s->opt[OPT_EXPOSURE].cap |= SANE_CAP_INACTIVE; s->opt[OPT_EXPOSURE].unit = SANE_UNIT_PERCENT; s->opt[OPT_EXPOSURE].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_EXPOSURE].constraint.range = &exposure_range; s->val[OPT_EXPOSURE].w = 23; /* brightness automatic correct */ s->opt[OPT_AUTO_BRIGHTNESS].name = "adjust-bright"; s->opt[OPT_AUTO_BRIGHTNESS].title = "Automatic brightness correction"; s->opt[OPT_AUTO_BRIGHTNESS].desc = "Turns on automatic brightness correction of " "the acquired image. This makes the scanner do a two pass scan to analyse the " "brightness of the image before it's scanned."; s->opt[OPT_AUTO_BRIGHTNESS].type = SANE_TYPE_BOOL; s->val[OPT_AUTO_BRIGHTNESS].b = SANE_FALSE; /* contrast automatic correct */ s->opt[OPT_AUTO_CONTRAST].name = "adjust-contr"; s->opt[OPT_AUTO_CONTRAST].title = "Automatic contrast correction"; s->opt[OPT_AUTO_CONTRAST].desc = "Turns on automatic contrast correction of " "the acquired image. This makes the scanner do a two pass scan to analyse " "the contrast of the image to be scanned."; s->opt[OPT_AUTO_CONTRAST].type = SANE_TYPE_BOOL; s->val[OPT_AUTO_CONTRAST].b = SANE_FALSE; /* brightness */ s->opt[OPT_BRIGHTNESS].name = SANE_NAME_BRIGHTNESS; s->opt[OPT_BRIGHTNESS].title = SANE_TITLE_BRIGHTNESS; s->opt[OPT_BRIGHTNESS].desc = "Controls the brightness of the acquired image. " "When automatic brightness is enabled, this can be used to adjust the selected brightness."; s->opt[OPT_BRIGHTNESS].type = SANE_TYPE_FIXED; s->opt[OPT_BRIGHTNESS].unit = SANE_UNIT_PERCENT; s->opt[OPT_BRIGHTNESS].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_BRIGHTNESS].constraint.range = &percentage_range; s->val[OPT_BRIGHTNESS].w = 0; /* contrast */ s->opt[OPT_CONTRAST].name = SANE_NAME_CONTRAST; s->opt[OPT_CONTRAST].title = SANE_TITLE_CONTRAST; s->opt[OPT_CONTRAST].desc = "Controls the contrast of the acquired image. " "When automatic contrast is enabled, this can be used to adjust the selected contrast."; s->opt[OPT_CONTRAST].type = SANE_TYPE_FIXED; s->opt[OPT_CONTRAST].unit = SANE_UNIT_PERCENT; s->opt[OPT_CONTRAST].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_CONTRAST].constraint.range = &percentage_range; s->val[OPT_CONTRAST].w = 0; /* halftone patterns */ s->opt[OPT_HALFTONE_PATTERN].name = SANE_NAME_HALFTONE_PATTERN; s->opt[OPT_HALFTONE_PATTERN].title = SANE_TITLE_HALFTONE_PATTERN; s->opt[OPT_HALFTONE_PATTERN].desc = SANE_DESC_HALFTONE_PATTERN; s->opt[OPT_HALFTONE_PATTERN].type = SANE_TYPE_STRING; s->opt[OPT_HALFTONE_PATTERN].size = 32; s->opt[OPT_HALFTONE_PATTERN].constraint_type = SANE_CONSTRAINT_STRING_LIST; if (s->hw->upload_user_defines) { s->opt[OPT_HALFTONE_PATTERN].constraint.string_list = halftone_upload_list; s->val[OPT_HALFTONE_PATTERN].s = strdup (halftone_upload_list[0]); } else { s->opt[OPT_HALFTONE_PATTERN].constraint.string_list = halftone_list; s->val[OPT_HALFTONE_PATTERN].s = strdup (halftone_list[0]); } /* red-attenuation */ s->opt[OPT_ATTENUATION_RED].name = "red-attenuation"; s->opt[OPT_ATTENUATION_RED].title = "Red attenuation"; s->opt[OPT_ATTENUATION_RED].desc = "Controls the red attenuation of the acquired image. " "Higher values mean less impact on scanned image."; s->opt[OPT_ATTENUATION_RED].type = SANE_TYPE_FIXED; s->opt[OPT_ATTENUATION_RED].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_RED].unit = SANE_UNIT_PERCENT; s->opt[OPT_ATTENUATION_RED].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_ATTENUATION_RED].constraint.range = &attenuation_range; s->val[OPT_ATTENUATION_RED].w = SANE_FIX (50.0); /* green-attenuation */ s->opt[OPT_ATTENUATION_GREEN].name = "green-attenuation"; s->opt[OPT_ATTENUATION_GREEN].title = "Green attenuation"; s->opt[OPT_ATTENUATION_GREEN].desc = "Controls the green attenuation of the acquired image. " "Higher values mean less impact on scanned image."; s->opt[OPT_ATTENUATION_GREEN].type = SANE_TYPE_FIXED; s->opt[OPT_ATTENUATION_GREEN].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_GREEN].unit = SANE_UNIT_PERCENT; s->opt[OPT_ATTENUATION_GREEN].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_ATTENUATION_GREEN].constraint.range = &attenuation_range; s->val[OPT_ATTENUATION_GREEN].w = SANE_FIX (50.0); /* blue-attenuation */ s->opt[OPT_ATTENUATION_BLUE].name = "blue-attenuation"; s->opt[OPT_ATTENUATION_BLUE].title = "Blue attenuation"; s->opt[OPT_ATTENUATION_BLUE].desc = "Controls the blue attenuation of the acquired image. " "Higher values mean less impact on scanned image."; s->opt[OPT_ATTENUATION_BLUE].type = SANE_TYPE_FIXED; s->opt[OPT_ATTENUATION_BLUE].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_BLUE].unit = SANE_UNIT_PERCENT; s->opt[OPT_ATTENUATION_BLUE].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_ATTENUATION_BLUE].constraint.range = &attenuation_range; s->val[OPT_ATTENUATION_BLUE].w = SANE_FIX (50.0); /* quality-calibration */ s->opt[OPT_QUALITY].name = SANE_NAME_QUALITY_CAL; s->opt[OPT_QUALITY].title = SANE_TITLE_QUALITY_CAL; s->opt[OPT_QUALITY].desc = "Controls the calibration that will be done in the " "scanner. Less calibration result in faster scanner times."; s->opt[OPT_QUALITY].type = SANE_TYPE_STRING; s->opt[OPT_QUALITY].size = 32; if (!s->hw->quality) s->opt[OPT_QUALITY].cap |= SANE_CAP_INACTIVE; else s->opt[OPT_QUALITY].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_QUALITY].constraint_type = SANE_CONSTRAINT_STRING_LIST; s->opt[OPT_QUALITY].constraint.string_list = quality_list; s->val[OPT_QUALITY].s = strdup (quality_list[1]); /* sharpening */ s->opt[OPT_SHARPEN].name = "sharpen"; s->opt[OPT_SHARPEN].title = "Sharpening"; s->opt[OPT_SHARPEN].desc = "Controls the sharpening that will be " "done by the video processor in the scanner."; s->opt[OPT_SHARPEN].type = SANE_TYPE_INT; s->opt[OPT_SHARPEN].unit = SANE_UNIT_NONE; s->opt[OPT_SHARPEN].constraint_type = SANE_CONSTRAINT_RANGE; s->opt[OPT_SHARPEN].constraint.range = &sharpen_range; s->val[OPT_SHARPEN].w = 1; return SANE_STATUS_GOOD; } static SANE_Status attach_one (const char *dev) { attach (dev, 0); return SANE_STATUS_GOOD; } SANE_Status sane_init (SANE_Int * version_code, SANE_Auth_Callback authorize) { char dev_name[PATH_MAX]; size_t len; FILE *fp; authorize = authorize; /* silence gcc */ DBG_INIT (); sanei_thread_init (); if (version_code) *version_code = SANE_VERSION_CODE (SANE_CURRENT_MAJOR, V_MINOR, 0); fp = sanei_config_open ("agfafocus.conf"); if (!fp) { /* default to /dev/scanner instead of insisting on config file */ attach ("/dev/scanner", 0); return SANE_STATUS_GOOD; } while (sanei_config_read (dev_name, sizeof (dev_name), fp)) { if (dev_name[0] == '#') /* ignore line comments */ continue; len = strlen (dev_name); if (!len) continue; /* ignore empty lines */ sanei_config_attach_matching_devices (dev_name, attach_one); } fclose (fp); return SANE_STATUS_GOOD; } void sane_exit (void) { AgfaFocus_Device *dev, *next; for (dev = agfafocus_devices; dev; dev = next) { next = dev->next; if (dev->handle) sane_close (dev->handle); free (dev); } } SANE_Status sane_get_devices (const SANE_Device *** device_list, SANE_Bool local_only) { static const SANE_Device **devlist = 0; AgfaFocus_Device *dev; int i; local_only = local_only; /* silence gcc */ if (devlist) free (devlist); devlist = malloc ((num_devices + 1) * sizeof (devlist[0])); if (!devlist) return SANE_STATUS_NO_MEM; for (dev = agfafocus_devices, i = 0; i < num_devices; dev = dev->next) devlist[i++] = &dev->sane; devlist[i++] = 0; *device_list = devlist; return SANE_STATUS_GOOD; } SANE_Status sane_open (SANE_String_Const devicename, SANE_Handle * handle) { AgfaFocus_Device *dev; SANE_Status status; AgfaFocus_Scanner *s; if (devicename[0]) { status = attach (devicename, &dev); if (status != SANE_STATUS_GOOD) return status; } else { /* empty devicname -> use first device */ dev = agfafocus_devices; } if (!dev) return SANE_STATUS_INVAL; if (dev->handle) return SANE_STATUS_DEVICE_BUSY; s = malloc (sizeof (*s)); if (!s) return SANE_STATUS_NO_MEM; memset (s, 0, sizeof (*s)); s->scanning = SANE_FALSE; s->fd = -1; s->hw = dev; s->hw->handle = s; init_options (s); *handle = s; return SANE_STATUS_GOOD; } void sane_close (SANE_Handle handle) { AgfaFocus_Scanner *s = handle; if (s->scanning) do_cancel (handle); s->hw->handle = 0; free (handle); } const SANE_Option_Descriptor * sane_get_option_descriptor (SANE_Handle handle, SANE_Int option) { AgfaFocus_Scanner *s = handle; if ((unsigned) option >= NUM_OPTIONS) return 0; return s->opt + option; } SANE_Status sane_control_option (SANE_Handle handle, SANE_Int option, SANE_Action action, void *val, SANE_Int * info) { AgfaFocus_Scanner *s = handle; SANE_Status status; if (info) *info = 0; if (s->scanning) return SANE_STATUS_DEVICE_BUSY; if (option >= NUM_OPTIONS || !SANE_OPTION_IS_ACTIVE (s->opt[option].cap)) return SANE_STATUS_UNSUPPORTED; if (action == SANE_ACTION_GET_VALUE) { switch (option) { case OPT_RESOLUTION: case OPT_TL_X: case OPT_TL_Y: case OPT_BR_X: case OPT_BR_Y: case OPT_NUM_OPTS: case OPT_BRIGHTNESS: case OPT_CONTRAST: case OPT_SHARPEN: case OPT_EXPOSURE: case OPT_ATTENUATION_RED: case OPT_ATTENUATION_GREEN: case OPT_ATTENUATION_BLUE: *(SANE_Word *) val = s->val[option].w; break; case OPT_AUTO_BRIGHTNESS: case OPT_AUTO_CONTRAST: *(SANE_Bool *) val = s->val[option].b; break; case OPT_MODE: case OPT_HALFTONE_PATTERN: case OPT_QUALITY: case OPT_SOURCE: strcpy (val, s->val[option].s); return (SANE_STATUS_GOOD); default: return SANE_STATUS_UNSUPPORTED; } } else if (action == SANE_ACTION_SET_VALUE) { if (!SANE_OPTION_IS_SETTABLE (s->opt[option].cap)) return SANE_STATUS_UNSUPPORTED; status = sanei_constrain_value (s->opt + option, val, info); if (status != SANE_STATUS_GOOD) return status; switch (option) { case OPT_RESOLUTION: case OPT_TL_X: case OPT_TL_Y: case OPT_BR_X: case OPT_BR_Y: if (info) *info |= SANE_INFO_RELOAD_PARAMS; case OPT_SHARPEN: case OPT_EXPOSURE: case OPT_ATTENUATION_RED: case OPT_ATTENUATION_GREEN: case OPT_ATTENUATION_BLUE: case OPT_BRIGHTNESS: case OPT_CONTRAST: s->val[option].w = *(SANE_Word *) val; break; case OPT_AUTO_BRIGHTNESS: case OPT_AUTO_CONTRAST: s->val[option].b = *(SANE_Bool *) val; break; case OPT_MODE: if (strcmp (s->val[option].s, (SANE_String) val)) { if (info) *info |= SANE_INFO_RELOAD_OPTIONS | SANE_INFO_RELOAD_PARAMS; if (s->val[option].s) free (s->val[option].s); s->val[option].s = strdup (val); if (strcmp (s->val[option].s, "Gray (6 bit)") == 0) s->mode = GRAY6BIT; else if (strcmp (s->val[option].s, "Gray (8 bit)") == 0) s->mode = GRAY8BIT; else if (strcmp (s->val[option].s, "Color (18 bit)") == 0) s->mode = COLOR18BIT; else if (strcmp (s->val[option].s, "Color (24 bit)") == 0) s->mode = COLOR24BIT; else s->mode = LINEART; switch (s->mode) { case LINEART: s->opt[OPT_HALFTONE_PATTERN].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_SHARPEN].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_EXPOSURE].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_RED].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_GREEN].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_BLUE].cap |= SANE_CAP_INACTIVE; s->opt[OPT_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_CONTRAST].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_AUTO_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_AUTO_CONTRAST].cap &= ~SANE_CAP_INACTIVE; break; case GRAY6BIT: s->opt[OPT_SHARPEN].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_EXPOSURE].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_RED].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_GREEN].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_BLUE].cap |= SANE_CAP_INACTIVE; s->opt[OPT_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_CONTRAST].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_AUTO_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_AUTO_CONTRAST].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_HALFTONE_PATTERN].cap |= SANE_CAP_INACTIVE; break; case GRAY8BIT: s->opt[OPT_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_CONTRAST].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_AUTO_BRIGHTNESS].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_AUTO_CONTRAST].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_EXPOSURE].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_RED].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_GREEN].cap |= SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_BLUE].cap |= SANE_CAP_INACTIVE; s->opt[OPT_HALFTONE_PATTERN].cap |= SANE_CAP_INACTIVE; s->opt[OPT_SHARPEN].cap |= SANE_CAP_INACTIVE; break; case COLOR18BIT: s->opt[OPT_EXPOSURE].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_RED].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_GREEN].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_BLUE].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_BRIGHTNESS].cap |= SANE_CAP_INACTIVE; s->opt[OPT_CONTRAST].cap |= SANE_CAP_INACTIVE; s->opt[OPT_AUTO_BRIGHTNESS].cap |= SANE_CAP_INACTIVE; s->opt[OPT_AUTO_CONTRAST].cap |= SANE_CAP_INACTIVE; s->opt[OPT_SHARPEN].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_HALFTONE_PATTERN].cap |= SANE_CAP_INACTIVE; break; case COLOR24BIT: s->opt[OPT_EXPOSURE].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_RED].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_GREEN].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_ATTENUATION_BLUE].cap &= ~SANE_CAP_INACTIVE; s->opt[OPT_BRIGHTNESS].cap |= SANE_CAP_INACTIVE; s->opt[OPT_CONTRAST].cap |= SANE_CAP_INACTIVE; s->opt[OPT_AUTO_BRIGHTNESS].cap |= SANE_CAP_INACTIVE; s->opt[OPT_AUTO_CONTRAST].cap |= SANE_CAP_INACTIVE; s->opt[OPT_SHARPEN].cap |= SANE_CAP_INACTIVE; s->opt[OPT_HALFTONE_PATTERN].cap |= SANE_CAP_INACTIVE; break; } } break; case OPT_SOURCE: case OPT_QUALITY: case OPT_HALFTONE_PATTERN: if (info && strcmp (s->val[option].s, (SANE_String) val)) *info |= SANE_INFO_RELOAD_OPTIONS | SANE_INFO_RELOAD_PARAMS; if (s->val[option].s) free (s->val[option].s); s->val[option].s = strdup (val); break; default: return SANE_STATUS_UNSUPPORTED; } } else { return SANE_STATUS_UNSUPPORTED; } return SANE_STATUS_GOOD; } SANE_Status sane_get_parameters (SANE_Handle handle, SANE_Parameters * params) { AgfaFocus_Scanner *s = handle; if (!s->scanning) { double width, height, dpi; const char *quality; const char *original; memset (&s->params, 0, sizeof (s->params)); width = SANE_UNFIX (s->val[OPT_BR_X].w - s->val[OPT_TL_X].w); height = SANE_UNFIX (s->val[OPT_BR_Y].w - s->val[OPT_TL_Y].w); dpi = s->val[OPT_RESOLUTION].w; /* make best-effort guess at what parameters will look like once scanning starts. */ if (dpi > 0.0 && width > 0.0 && height > 0.0) { double dots_per_mm = dpi / MM_PER_INCH; s->params.pixels_per_line = width * dots_per_mm + 0.5; s->params.lines = height * dots_per_mm + 0.5; } /* Should we specify calibration quality? */ if (SANE_OPTION_IS_ACTIVE (s->opt[OPT_QUALITY].cap)) { DBG(3, " -------------- setting quality\n"); quality = s->val[OPT_QUALITY].s; if (strcmp (quality, "Low") == 0 ) s->quality = 255; else if (strcmp (quality, "High") == 0) s->quality = 1; else s->quality = 0; } else s->quality = 0; /* Should we select source type? */ if (SANE_OPTION_IS_ACTIVE (s->opt[OPT_SOURCE].cap)) { DBG(3, " -------------- setting source\n"); original = s->val[OPT_SOURCE].s; if (strcmp (original, "Transparency") == 0) s->original = 0; else s->original = 1; } else s->original = 0; s->exposure = ((s->val[OPT_EXPOSURE].w * (255.0f - 80.0f)) / 100.0f) + 80.0f; s->r_att = (SANE_UNFIX (s->val[OPT_ATTENUATION_RED].w) * 20.0f) / 100.0f; s->g_att = (SANE_UNFIX (s->val[OPT_ATTENUATION_GREEN].w) * 20.0f) / 100.0f; s->b_att = (SANE_UNFIX (s->val[OPT_ATTENUATION_BLUE].w) * 20.0f) / 100.0f; s->tonecurve = 0; switch (s->mode) { case LINEART: { const char *halftone; s->image_composition = 0; /* in 1 bpp mode, lines need to be 8 pixel length */ if (s->params.pixels_per_line % 8) s->params.pixels_per_line += 8 - (s->params.pixels_per_line % 8); s->params.format = SANE_FRAME_GRAY; s->params.bytes_per_line = s->params.pixels_per_line / 8; s->bpp = s->params.depth = 1; halftone = s->val[OPT_HALFTONE_PATTERN].s; if (strcmp (halftone, "1") == 0 ) s->halftone = 1; else if (strcmp (halftone, "Dispersed dot 4x4") == 0) s->halftone = 2; else if (strcmp (halftone, "Round (Clustered dot 4x4)") == 0) s->halftone = 3; else if (strcmp (halftone, "Diamond (Clustered dot 4x4)") == 0) s->halftone = 4; else if (strcmp (halftone, "User defined") == 0) s->halftone = 5; else s->halftone = 0; s->edge = s->val[OPT_SHARPEN].w; } break; case GRAY6BIT: s->image_composition = 2; s->params.format = SANE_FRAME_GRAY; s->params.bytes_per_line = s->params.pixels_per_line; s->bpp = 6; s->params.depth = 8; s->edge = s->val[OPT_SHARPEN].w; break; case GRAY8BIT: s->image_composition = 2; s->params.format = SANE_FRAME_GRAY; s->params.bytes_per_line = s->params.pixels_per_line; s->bpp = s->params.depth = 8; break; case COLOR18BIT: s->image_composition = 5; s->params.format = SANE_FRAME_RED; s->params.bytes_per_line = s->params.pixels_per_line; s->bpp = 6; s->params.depth = 8; s->edge = s->val[OPT_SHARPEN].w; break; case COLOR24BIT: s->image_composition = 5; s->params.format = SANE_FRAME_RED; s->params.bytes_per_line = s->params.pixels_per_line; s->bpp = s->params.depth = 8; break; } s->pass = 0; /*s->params.bytes_per_line = (s->params.pixels_per_line + (8 - s->params.depth)) / (8 / s->params.depth);*/ } else if (s->mode == COLOR18BIT || s->mode == COLOR24BIT) s->params.format = SANE_FRAME_RED + s->pass; s->params.last_frame = (s->params.format != SANE_FRAME_RED && s->params.format != SANE_FRAME_GREEN); if (params) *params = s->params; return SANE_STATUS_GOOD; } /* This function is executed as a child process. The reason this is executed as a subprocess is because some (most?) generic SCSI interfaces block a SCSI request until it has completed. With a subprocess, we can let it block waiting for the request to finish while the main process can go about to do more important things (such as recognizing when the user presses a cancel button). WARNING: Since this is executed as a subprocess, it's NOT possible to update any of the variables in the main process (in particular the scanner state cannot be updated). */ static int reader_process (void *scanner) { AgfaFocus_Scanner *s = (AgfaFocus_Scanner *) scanner; int fd = s->reader_pipe; SANE_Status status; SANE_Byte *data; int lines_read = 0; int lines_per_buffer; int bytes_per_line = 0, total_lines = 0; int i; sigset_t sigterm_set; sigset_t ignore_set; struct SIGACTION act; if (sanei_thread_is_forked()) close (s->pipe); sigfillset (&ignore_set); sigdelset (&ignore_set, SIGTERM); #if defined (__APPLE__) && defined (__MACH__) sigdelset (&ignore_set, SIGUSR2); #endif sigprocmask (SIG_SETMASK, &ignore_set, 0); memset (&act, 0, sizeof (act)); sigaction (SIGTERM, &act, 0); sigemptyset (&sigterm_set); sigaddset (&sigterm_set, SIGTERM); if (!s->hw->disconnect) wait_ready (s->fd); status = get_read_sizes (s->fd, &s->lines_available, &bytes_per_line, &total_lines); if (status != SANE_STATUS_GOOD) { DBG (1, "open: get_read_sizes() failed: %s\n", sane_strstatus (status)); do_cancel (s); close (fd); return 1; } if (!s->lines_available || !bytes_per_line || !total_lines || bytes_per_line < s->params.bytes_per_line) { DBG (1, "open: invalid sizes: %d, %d, %d\n", s->lines_available, bytes_per_line, total_lines); do_cancel (s); close (fd); return 1; } lines_per_buffer = sanei_scsi_max_request_size / bytes_per_line; if (!lines_per_buffer) { close (fd); return 2; /* resolution is too high */ } data = malloc (lines_per_buffer * bytes_per_line); if (!data) { DBG (1, "open malloc(%lu) failed.\n", (u_long) lines_per_buffer * bytes_per_line); do_cancel (s); close (fd); return 1; } while (lines_read < s->params.lines) { int lines = lines_per_buffer; if (s->lines_available == 0) { /* No lines in scanner? Scan some more */ status = request_more_data (s); if (status != SANE_STATUS_GOOD) { close (fd); return 1; } } /* We only request as many lines as there are already scanned */ if (lines > s->lines_available) lines = s->lines_available; DBG (1, "Requesting %d lines, in scanner: %d, total: %d\n", lines, s->lines_available, s->params.lines); status = read_data (s, data, lines, bytes_per_line); if (status != SANE_STATUS_GOOD) { DBG (1, "sane_read: read_data() failed (%s)\n", sane_strstatus (status)); do_cancel (s); close (fd); return 1; } /* Sometimes the scanner will return more bytes per line than requested, so we copy only what we wanted. */ for (i = 0; i < lines; i++) if (write (fd, data + i * bytes_per_line, s->params.bytes_per_line) != s->params.bytes_per_line) { do_cancel (s); close (fd); return 1; } lines_read += lines; } close (fd); return 0; } SANE_Status sane_start (SANE_Handle handle) { AgfaFocus_Scanner *s = handle; SANE_Status status; int fds[2]; /* First make sure we have a current parameter set. Some of the parameters will be overwritten below, but that's OK. */ status = sane_get_parameters (s, 0); if (status != SANE_STATUS_GOOD) return status; /* don't initialise scanner if we're doing a three-pass scan */ if (s->pass == 0) { if (s->fd < 0) { status = sanei_scsi_open (s->hw->sane.name, &s->fd, sense_handler, 0); if (status != SANE_STATUS_GOOD) { DBG (1, "open: open of %s failed: %s\n", s->hw->sane.name, sane_strstatus (status)); s->fd = -1; return status; } } status = test_ready (s->fd); if (status != SANE_STATUS_GOOD) { DBG (1, "open: test_ready() failed: %s\n", sane_strstatus (status)); sanei_scsi_close (s->fd); s->fd = -1; return status; } status = reserve_unit (s->fd); if (status != SANE_STATUS_GOOD) { DBG (1, "open: reserve_unit() failed: %s\n", sane_strstatus (status)); sanei_scsi_close (s->fd); s->fd = -1; return status; } status = set_window (s); if (status != SANE_STATUS_GOOD) { DBG (1, "open: set_window() failed: %s\n", sane_strstatus (status)); release_unit (s->fd); sanei_scsi_close (s->fd); s->fd = -1; return status; } { int matrix[256] = { 2, 60, 16, 56, 3, 57, 13, 53, 34, 18, 48, 32, 35, 19, 45, 29, 10, 50, 6, 63, 11, 51, 7, 61, 42, 26, 38, 22, 43, 27, 39, 23, 4, 58, 14, 54, 1, 59, 15, 55, 36, 20, 46, 30, 33, 17, 47, 31, 12, 52, 8, 62, 9, 49, 5, 63, 44, 28, 40, 24, 41, 25, 37, 21 }; status = upload_dither_matrix (s, 8, 8, matrix); if (status != SANE_STATUS_GOOD) { DBG (1, "open: upload_dither_matrix() failed: %s\n", sane_strstatus (status)); release_unit (s->fd); sanei_scsi_close (s->fd); s->fd = -1; return status; } } s->scanning = SANE_TRUE; status = start_scan (s->fd, SANE_FALSE); if (status != SANE_STATUS_GOOD) { DBG (1, "open: start_scan() failed: %s\n", sane_strstatus (status)); do_cancel (s); return status; } } else { /* continue three-pass scan */ status = start_scan (s->fd, SANE_TRUE); if (status != SANE_STATUS_GOOD) { DBG (1, "open: start_scan() failed: %s\n", sane_strstatus (status)); do_cancel (s); return status; } } if (pipe (fds) < 0) return SANE_STATUS_IO_ERROR; s->pipe = fds[0]; s->reader_pipe = fds[1]; s->reader_pid = sanei_thread_begin (reader_process, (void *) s); if (sanei_thread_is_forked()) close (s->reader_pipe); return SANE_STATUS_GOOD; } SANE_Status sane_read (SANE_Handle handle, SANE_Byte * buf, SANE_Int max_len, SANE_Int * len) { AgfaFocus_Scanner *s = handle; ssize_t nread; *len = 0; nread = read (s->pipe, buf, max_len); DBG (3, "read %ld bytes\n", (long) nread); if (!s->scanning) return do_cancel (s); if (nread < 0) { if (errno == EAGAIN) { return SANE_STATUS_GOOD; } else { do_cancel (s); return SANE_STATUS_IO_ERROR; } } *len = nread; if (nread == 0) { s->pass++; return do_eof (s); } return SANE_STATUS_GOOD; } void sane_cancel (SANE_Handle handle) { AgfaFocus_Scanner *s = handle; if (s->reader_pid != -1) sanei_thread_kill (s->reader_pid); s->scanning = SANE_FALSE; } SANE_Status sane_set_io_mode (SANE_Handle handle, SANE_Bool non_blocking) { AgfaFocus_Scanner *s = handle; if (!s->scanning) return SANE_STATUS_INVAL; if (fcntl (s->pipe, F_SETFL, non_blocking ? O_NONBLOCK : 0) < 0) return SANE_STATUS_IO_ERROR; return SANE_STATUS_GOOD; } SANE_Status sane_get_select_fd (SANE_Handle handle, SANE_Int * fd) { AgfaFocus_Scanner *s = handle; if (!s->scanning) return SANE_STATUS_INVAL; *fd = s->pipe; return SANE_STATUS_GOOD; }