/* sane - Scanner Access Now Easy. Copyright (C) 1997 Geoffrey T. Dairiki This file is part of the SANE package. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. As a special exception, the authors of SANE give permission for additional uses of the libraries contained in this release of SANE. The exception is that, if you link a SANE library with other files to produce an executable, this does not by itself cause the resulting executable to be covered by the GNU General Public License. Your use of that executable is in no way restricted on account of linking the SANE library code into it. This exception does not, however, invalidate any other reasons why the executable file might be covered by the GNU General Public License. If you submit changes to SANE to the maintainers to be included in a subsequent release, you agree by submitting the changes that those changes may be distributed with this exception intact. If you write modifications of your own for SANE, it is your choice whether to permit this exception to apply to your modifications. If you do not wish that, delete this exception notice. This file is part of a SANE backend for HP Scanners supporting HP Scanner Control Language (SCL). */ /* #define STUBS extern int sanei_debug_hp; */ #define DEBUG_DECLARE_ONLY #include "../include/sane/config.h" #include "../include/sane/sanei_backend.h" #include "../include/lassert.h" #include <string.h> #include <sys/types.h> #include "hp.h" #include "hp-option.h" #include "hp-accessor.h" #include "hp-device.h" #define DATA_SIZE_INCREMENT (1024) /* * class HpData */ struct hp_data_s { hp_byte_t * buf; size_t bufsiz; size_t length; hp_bool_t frozen; }; static void hp_data_resize (HpData this, size_t newsize) { if (this->bufsiz != newsize) { assert(!this->frozen); this->buf = sanei_hp_realloc(this->buf, newsize); assert(this->buf); this->bufsiz = newsize; } } static void hp_data_freeze (HpData this) { hp_data_resize(this, this->length); this->frozen = 1; } static size_t hp_data_alloc (HpData this, size_t sz) { size_t newsize = this->bufsiz; size_t offset = this->length; /* * mike@easysw.com: * * The following code is REQUIRED so that pointers, etc. aren't * misaligned. This causes MAJOR problems on all SPARC, ALPHA, * and MIPS processors, and possibly others. * * The workaround is to ensure that all allocations are in multiples * of 8 bytes. */ sz = (sz + sizeof (long) - 1) & ~(sizeof (long) - 1); while (newsize < this->length + sz) newsize += DATA_SIZE_INCREMENT; hp_data_resize(this, newsize); this->length += sz; return offset; } static void * hp_data_data (HpData this, size_t offset) { assert(offset < this->length); return (char *)this->buf + offset; } HpData sanei_hp_data_new (void) { return sanei_hp_allocz(sizeof(struct hp_data_s)); } HpData sanei_hp_data_dup (HpData orig) { HpData new; hp_data_freeze(orig); if (!( new = sanei_hp_memdup(orig, sizeof(*orig)) )) return 0; if (!(new->buf = sanei_hp_memdup(orig->buf, orig->bufsiz))) { sanei_hp_free(new); return 0; } return new; } void sanei_hp_data_destroy (HpData this) { sanei_hp_free(this->buf); sanei_hp_free(this); } /* * class HpAccessor */ typedef const struct hp_accessor_type_s * HpAccessorType; typedef struct hp_accessor_s * _HpAccessor; struct hp_accessor_s { HpAccessorType type; size_t data_offset; size_t data_size; }; struct hp_accessor_type_s { SANE_Status (*get)(HpAccessor this, HpData data, void * valp); SANE_Status (*set)(HpAccessor this, HpData data, void * valp); int (*getint)(HpAccessor this, HpData data); void (*setint)(HpAccessor this, HpData data, int val); }; SANE_Status sanei_hp_accessor_get (HpAccessor this, HpData data, void * valp) { if (!this->type->get) return SANE_STATUS_INVAL; return (*this->type->get)(this, data, valp); } SANE_Status sanei_hp_accessor_set (HpAccessor this, HpData data, void * valp) { if (!this->type->set) return SANE_STATUS_INVAL; return (*this->type->set)(this, data, valp); } int sanei_hp_accessor_getint (HpAccessor this, HpData data) { assert (this->type->getint); return (*this->type->getint)(this, data); } void sanei_hp_accessor_setint (HpAccessor this, HpData data, int val) { assert (this->type->setint); (*this->type->setint)(this, data, val); } const void * sanei_hp_accessor_data (HpAccessor this, HpData data) { return hp_data_data(data, this->data_offset); } void * sanei__hp_accessor_data (HpAccessor this, HpData data) { return hp_data_data(data, this->data_offset); } size_t sanei_hp_accessor_size (HpAccessor this) { return this->data_size; } HpAccessor sanei_hp_accessor_new (HpData data, size_t sz) { static const struct hp_accessor_type_s type = { 0, 0, 0, 0 }; _HpAccessor new = sanei_hp_alloc(sizeof(*new)); new->type = &type; new->data_offset = hp_data_alloc(data, new->data_size = sz); return new; } /* * class HpAccessorInt */ #define hp_accessor_int_s hp_accessor_s typedef const struct hp_accessor_int_s * HpAccessorInt; typedef struct hp_accessor_int_s * _HpAccessorInt; static SANE_Status hp_accessor_int_get (HpAccessor this, HpData data, void * valp) { *(SANE_Int*)valp = *(int *)hp_data_data(data, this->data_offset); return SANE_STATUS_GOOD; } static SANE_Status hp_accessor_int_set (HpAccessor this, HpData data, void * valp) { *(int *)hp_data_data(data, this->data_offset) = *(SANE_Int*)valp; return SANE_STATUS_GOOD; } static int hp_accessor_int_getint (HpAccessor this, HpData data) { return *(int *)hp_data_data(data, this->data_offset); } static void hp_accessor_int_setint (HpAccessor this, HpData data, int val) { *(int *)hp_data_data(data, this->data_offset) = val; } HpAccessor sanei_hp_accessor_int_new (HpData data) { static const struct hp_accessor_type_s type = { hp_accessor_int_get, hp_accessor_int_set, hp_accessor_int_getint, hp_accessor_int_setint }; _HpAccessorInt new = sanei_hp_alloc(sizeof(*new)); new->type = &type; new->data_offset = hp_data_alloc(data, new->data_size = sizeof(int)); return (HpAccessor)new; } /* * class HpAccessorBool */ #define hp_accessor_bool_s hp_accessor_s typedef const struct hp_accessor_bool_s * HpAccessorBool; typedef struct hp_accessor_bool_s * _HpAccessorBool; static SANE_Status hp_accessor_bool_get (HpAccessor this, HpData data, void * valp) { int val = *(int *)hp_data_data(data, this->data_offset); *(SANE_Bool*)valp = val ? SANE_TRUE : SANE_FALSE; return SANE_STATUS_GOOD; } static SANE_Status hp_accessor_bool_set (HpAccessor this, HpData data, void * valp) { int * datap = hp_data_data(data, this->data_offset); *datap = *(SANE_Bool*)valp == SANE_FALSE ? 0 : 1; return SANE_STATUS_GOOD; } HpAccessor sanei_hp_accessor_bool_new (HpData data) { static const struct hp_accessor_type_s type = { hp_accessor_bool_get, hp_accessor_bool_set, hp_accessor_int_getint, hp_accessor_int_setint }; _HpAccessorBool new = sanei_hp_alloc(sizeof(*new)); new->type = &type; new->data_offset = hp_data_alloc(data, new->data_size = sizeof(int)); return (HpAccessor)new; } /* * class HpAccessorFixed */ #define hp_accessor_fixed_s hp_accessor_s typedef const struct hp_accessor_fixed_s * HpAccessorFixed; typedef struct hp_accessor_fixed_s * _HpAccessorFixed; static SANE_Status hp_accessor_fixed_get (HpAccessor this, HpData data, void * valp) { *(SANE_Fixed*)valp = *(SANE_Fixed *)hp_data_data(data, this->data_offset); return SANE_STATUS_GOOD; } static SANE_Status hp_accessor_fixed_set (HpAccessor this, HpData data, void * valp) { *(SANE_Fixed *)hp_data_data(data, this->data_offset) = *(SANE_Fixed*)valp; return SANE_STATUS_GOOD; } HpAccessor sanei_hp_accessor_fixed_new (HpData data) { static const struct hp_accessor_type_s type = { hp_accessor_fixed_get, hp_accessor_fixed_set, 0, 0 }; _HpAccessorFixed new = sanei_hp_alloc(sizeof(*new)); new->type = &type; new->data_offset = hp_data_alloc(data, new->data_size = sizeof(SANE_Fixed)); return (HpAccessor)new; } /* * class HpAccessorChoice */ typedef struct hp_accessor_choice_s * _HpAccessorChoice; struct hp_accessor_choice_s { HpAccessorType type; size_t data_offset; size_t data_size; HpChoice choices; SANE_String_Const * strlist; }; static SANE_Status hp_accessor_choice_get (HpAccessor this, HpData data, void * valp) { HpChoice choice = *(HpChoice *)hp_data_data(data, this->data_offset); strcpy(valp, choice->name); return SANE_STATUS_GOOD; } static SANE_Status hp_accessor_choice_set (HpAccessor _this, HpData data, void * valp) { HpAccessorChoice this = (HpAccessorChoice)_this; HpChoice choice; SANE_String_Const * strlist = this->strlist; for (choice = this->choices; choice; choice = choice->next) { /* Skip choices which aren't in strlist. */ if (!*strlist || strcmp(*strlist, choice->name) != 0) continue; strlist++; if (strcmp((const char *)valp, choice->name) == 0) { *(HpChoice *)hp_data_data(data, this->data_offset) = choice; return SANE_STATUS_GOOD; } } return SANE_STATUS_INVAL; } static int hp_accessor_choice_getint (HpAccessor this, HpData data) { HpChoice choice = *(HpChoice *)hp_data_data(data, this->data_offset); return choice->val; } static void hp_accessor_choice_setint (HpAccessor _this, HpData data, int val) { HpAccessorChoice this = (HpAccessorChoice)_this; HpChoice choice; HpChoice first_choice = 0; SANE_String_Const * strlist = this->strlist; for (choice = this->choices; choice; choice = choice->next) { /* Skip choices which aren't in strlist. */ if (!*strlist || strcmp(*strlist, choice->name) != 0) continue; strlist++; if (!first_choice) first_choice = choice; /* First enabled choice */ if (choice->val == val) { *(HpChoice *)hp_data_data(data, this->data_offset) = choice; return; } } if (first_choice) *(HpChoice *)hp_data_data(data, this->data_offset) = first_choice; else assert(!"No choices to choose from?"); } SANE_Int sanei_hp_accessor_choice_maxsize (HpAccessorChoice this) { HpChoice choice; SANE_Int size = 0; for (choice = this->choices; choice; choice = choice->next) if ((SANE_Int)strlen(choice->name) >= size) size = strlen(choice->name) + 1; return size; } SANE_String_Const * sanei_hp_accessor_choice_strlist (HpAccessorChoice this, HpOptSet optset, HpData data, const HpDeviceInfo *info) { if (optset) { int old_val = hp_accessor_choice_getint((HpAccessor)this, data); HpChoice choice; size_t count = 0; for (choice = this->choices; choice; choice = choice->next) if (sanei_hp_choice_isEnabled(choice, optset, data, info)) this->strlist[count++] = choice->name; this->strlist[count] = 0; hp_accessor_choice_setint((HpAccessor)this, data, old_val); } return this->strlist; } HpAccessor sanei_hp_accessor_choice_new (HpData data, HpChoice choices, hp_bool_t may_change) { static const struct hp_accessor_type_s type = { hp_accessor_choice_get, hp_accessor_choice_set, hp_accessor_choice_getint, hp_accessor_choice_setint }; HpChoice choice; size_t count = 0; _HpAccessorChoice this; if ( may_change ) data->frozen = 0; for (choice = choices; choice; choice = choice->next) count++; this = sanei_hp_alloc(sizeof(*this) + (count+1) * sizeof(*this->strlist)); if (!this) return 0; this->type = &type; this->data_offset = hp_data_alloc(data, this->data_size = sizeof(HpChoice)); this->choices = choices; this->strlist = (SANE_String_Const *)(this + 1); count = 0; for (choice = this->choices; choice; choice = choice->next) this->strlist[count++] = choice->name; this->strlist[count] = 0; return (HpAccessor)this; } /* * class HpAccessorVector */ typedef struct hp_accessor_vector_s * _HpAccessorVector; struct hp_accessor_vector_s { HpAccessorType type; size_t data_offset; size_t data_size; unsigned short mask; unsigned short length; unsigned short offset; short stride; unsigned short (*unscale)(HpAccessorVector this, SANE_Fixed fval); SANE_Fixed (*scale)(HpAccessorVector this, unsigned short val); SANE_Fixed fmin; SANE_Fixed fmax; }; unsigned sanei_hp_accessor_vector_length (HpAccessorVector this) { return this->length; } SANE_Fixed sanei_hp_accessor_vector_minval (HpAccessorVector this) { return this->fmin; } SANE_Fixed sanei_hp_accessor_vector_maxval (HpAccessorVector this) { return this->fmax; } static unsigned short _v_get (HpAccessorVector this, const unsigned char * data) { unsigned short val; if (this->mask <= 255) val = data[0]; else #ifndef NotOrig val = (data[0] << 8) + data[1]; #else val = (data[1] << 8) + data[0]; #endif return val & this->mask; } static void _v_set (HpAccessorVector this, unsigned char * data, unsigned short val) { val &= this->mask; if (this->mask <= 255) { data[0] = (unsigned char)val; } else { #ifndef NotOrig data[1] = (unsigned char)val; data[0] = (unsigned char)(val >> 8); #else data[0] = (unsigned char)val; data[1] = (unsigned char)(val >> 8); #endif } } static SANE_Status hp_accessor_vector_get (HpAccessor _this, HpData d, void * valp) { HpAccessorVector this = (HpAccessorVector)_this; SANE_Fixed * ptr = valp; const SANE_Fixed * end = ptr + this->length; const unsigned char * data = hp_data_data(d, this->data_offset); data += this->offset; while (ptr < end) { *ptr++ = (*this->scale)(this, _v_get(this, data)); data += this->stride; } return SANE_STATUS_GOOD; } static SANE_Status hp_accessor_vector_set (HpAccessor _this, HpData d, void * valp) { HpAccessorVector this = (HpAccessorVector)_this; SANE_Fixed * ptr = valp; const SANE_Fixed * end = ptr + this->length; unsigned char * data = hp_data_data(d, this->data_offset); data += this->offset; while (ptr < end) { if (*ptr < this->fmin) *ptr = this->fmin; if (*ptr > this->fmax) *ptr = this->fmax; _v_set(this, data, (*this->unscale)(this, *ptr++)); data += this->stride; } return SANE_STATUS_GOOD; } static unsigned short _vector_unscale (HpAccessorVector this, SANE_Fixed fval) { unsigned short max_val = this->mask; return (fval * max_val + SANE_FIX(0.5)) / SANE_FIX(1.0); } static SANE_Fixed _vector_scale (HpAccessorVector this, unsigned short val) { unsigned short max_val = this->mask; return (SANE_FIX(1.0) * val + max_val / 2) / max_val; } HpAccessor sanei_hp_accessor_vector_new (HpData data, unsigned length, unsigned depth) { static const struct hp_accessor_type_s type = { hp_accessor_vector_get, hp_accessor_vector_set, 0, 0 }; unsigned width = depth > 8 ? 2 : 1; _HpAccessorVector new = sanei_hp_alloc(sizeof(*new)); if (!new) return 0; assert(depth > 0 && depth <= 16); assert(length > 0); new->type = &type; new->data_size = length * width; new->data_offset = hp_data_alloc(data, new->data_size); new->mask = ((unsigned)1 << depth) - 1; new->length = length; new->offset = 0; new->stride = width; new->scale = _vector_scale; new->unscale = _vector_unscale; new->fmin = SANE_FIX(0.0); new->fmax = SANE_FIX(1.0); return (HpAccessor)new; } static unsigned short _gamma_vector_unscale (HpAccessorVector UNUSEDARG this, SANE_Fixed fval) { unsigned short unscaled = fval / SANE_FIX(1.0); if (unscaled > 255) unscaled = 255; unscaled = 255 - unscaled; /* Dont know why. But this is how it works */ return unscaled; } static SANE_Fixed _gamma_vector_scale (HpAccessorVector UNUSEDARG this, unsigned short val) { SANE_Fixed scaled; val = 255-val; /* Dont know why. But this is how it works */ scaled = val * SANE_FIX(1.0); return scaled; } HpAccessor sanei_hp_accessor_gamma_vector_new (HpData data, unsigned length, unsigned depth) { _HpAccessorVector this = ( (_HpAccessorVector) sanei_hp_accessor_vector_new(data, length, depth) ); if (!this) return 0; this->offset += this->stride * (this->length - 1); this->stride = -this->stride; this->scale = _gamma_vector_scale; this->unscale = _gamma_vector_unscale; this->fmin = SANE_FIX(0.0); this->fmax = SANE_FIX(255.0); return (HpAccessor)this; } static unsigned short _matrix_vector_unscale (HpAccessorVector this, SANE_Fixed fval) { unsigned short max_val = this->mask >> 1; unsigned short sign_bit = this->mask & ~max_val; unsigned short sign = 0; if (fval == SANE_FIX(1.0)) return sign_bit; if (fval < 0) { sign = sign_bit; fval = -fval; } return sign | ((fval * max_val + this->fmax / 2) / this->fmax); } static SANE_Fixed _matrix_vector_scale (HpAccessorVector this, unsigned short val) { unsigned short max_val = this->mask >> 1; unsigned short sign_bit = this->mask & ~max_val; SANE_Fixed fval; if (val == sign_bit) return SANE_FIX(1.0); fval = (this->fmax * (val & max_val) + max_val / 2) / max_val; if ((val & sign_bit) != 0) fval = -fval; return fval; } HpAccessor sanei_hp_accessor_matrix_vector_new (HpData data, unsigned length, unsigned depth) { _HpAccessorVector this = ( (_HpAccessorVector) sanei_hp_accessor_vector_new(data, length, depth) ); if (!this) return 0; this->scale = _matrix_vector_scale; this->unscale = _matrix_vector_unscale; this->fmax = depth == 10 ? SANE_FIX(4.0) : SANE_FIX(2.0); this->fmax *= (this->mask >> 1); this->fmax >>= (depth - 1); this->fmin = - this->fmax; return (HpAccessor)this; } HpAccessor sanei_hp_accessor_subvector_new (HpAccessorVector super, unsigned nchan, unsigned chan) { _HpAccessorVector this = sanei_hp_memdup(super, sizeof(*this)); if (!this) return 0; assert(chan < nchan); assert(this->length % nchan == 0); this->length /= nchan; if (this->stride < 0) this->offset += (nchan - chan - 1) * this->stride; else this->offset += chan * this->stride; this->stride *= nchan; return (HpAccessor)this; } /* * class HpAccessorGeometry */ typedef const struct hp_accessor_geometry_s * HpAccessorGeometry; typedef struct hp_accessor_geometry_s * _HpAccessorGeometry; struct hp_accessor_geometry_s { HpAccessorType type; size_t data_offset; size_t data_size; HpAccessor this; HpAccessor other; hp_bool_t is_br; HpAccessor resolution; }; static SANE_Status hp_accessor_geometry_set (HpAccessor _this, HpData data, void * _valp) { HpAccessorGeometry this = (HpAccessorGeometry)_this; SANE_Fixed * valp = _valp; SANE_Fixed limit; sanei_hp_accessor_get(this->other, data, &limit); if (this->is_br ? *valp < limit : *valp > limit) *valp = limit; return sanei_hp_accessor_set(this->this, data, valp); } static int _to_devpixels (SANE_Fixed val_mm, SANE_Fixed mm_per_pix) { assert(val_mm >= 0); return (val_mm + mm_per_pix / 2) / mm_per_pix; } static int hp_accessor_geometry_getint (HpAccessor _this, HpData data) { HpAccessorGeometry this = (HpAccessorGeometry)_this; SANE_Fixed this_val, other_val; int res = sanei_hp_accessor_getint(this->resolution, data); SANE_Fixed mm_per_pix = (SANE_FIX(MM_PER_INCH) + res / 2) / res; assert(res > 0); sanei_hp_accessor_get(this->this, data, &this_val); if (this->is_br) { /* Convert to extent. */ sanei_hp_accessor_get(this->other, data, &other_val); assert(this_val >= other_val && other_val >= 0); return (_to_devpixels(this_val, mm_per_pix) - _to_devpixels(other_val, mm_per_pix) + 1); } return _to_devpixels(this_val, mm_per_pix); } /* * we should implement hp_accessor_geometry_setint, but we don't * need it yet... */ HpAccessor sanei_hp_accessor_geometry_new (HpAccessor val, HpAccessor lim, hp_bool_t is_br, HpAccessor resolution) { static const struct hp_accessor_type_s type = { hp_accessor_fixed_get, hp_accessor_geometry_set, hp_accessor_geometry_getint, 0 }; _HpAccessorGeometry new = sanei_hp_alloc(sizeof(*new)); new->type = &type; new->data_offset = val->data_offset; new->data_size = val->data_size; new->this = val; new->other = lim; new->is_br = is_br; new->resolution = resolution; return (HpAccessor)new; }