/** @file sanei_ir.c * * sanei_ir - functions for utilizing the infrared plane * * Copyright (C) 2012 Michael Rickmann <mrickma@gwdg.de> * * This file is part of the SANE package. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <https://www.gnu.org/licenses/>. * * The threshold yen, otsu and max_entropy routines have been * adapted from the FOURIER 0.8 library by M. Emre Celebi, * http://sourceforge.net/projects/fourier-ipal/ which is * licensed under the GNU General Public License version 2 or later. */ #include <stdlib.h> #include <string.h> #include <float.h> #include <limits.h> #include <math.h> #define BACKEND_NAME sanei_ir /* name of this module for debugging */ #include "../include/sane/sane.h" #include "../include/sane/sanei_debug.h" #include "../include/sane/sanei_ir.h" #include "../include/sane/sanei_magic.h" double * sanei_ir_create_norm_histo (const SANE_Parameters * params, const SANE_Uint *img_data); double * sanei_ir_accumulate_norm_histo (double * histo_data); /* Initialize sanei_ir */ void sanei_ir_init (void) { DBG_INIT (); } /* Create a normalized histogram of a grayscale image, internal */ double * sanei_ir_create_norm_histo (const SANE_Parameters * params, const SANE_Uint *img_data) { int is, i; int num_pixels; int *histo_data; double *histo; double term; DBG (10, "sanei_ir_create_norm_histo\n"); if ((params->format != SANE_FRAME_GRAY) && (params->format != SANE_FRAME_RED) && (params->format != SANE_FRAME_GREEN) && (params->format != SANE_FRAME_BLUE)) { DBG (5, "sanei_ir_create_norm_histo: invalid format\n"); return NULL; } /* Allocate storage for the histogram */ histo_data = calloc (HISTOGRAM_SIZE, sizeof (int)); histo = malloc (HISTOGRAM_SIZE * sizeof (double)); if ((histo == NULL) || (histo_data == NULL)) { DBG (5, "sanei_ir_create_norm_histo: no buffers\n"); if (histo) free (histo); if (histo_data) free (histo_data); return NULL; } num_pixels = params->pixels_per_line * params->lines; DBG (1, "sanei_ir_create_norm_histo: %d pixels_per_line, %d lines => %d num_pixels\n", params->pixels_per_line, params->lines, num_pixels); DBG (1, "sanei_ir_create_norm_histo: histo_data[] with %d x %ld bytes\n", HISTOGRAM_SIZE, sizeof(int)); /* Populate the histogram */ is = 16 - HISTOGRAM_SHIFT; /* Number of data bits to ignore */ DBG (1, "sanei_ir_create_norm_histo: depth %d, HISTOGRAM_SHIFT %d => ignore %d bits\n", params->depth, HISTOGRAM_SHIFT, is); for (i = num_pixels; i > 0; i--) { histo_data[*img_data++ >> is]++; } /* Calculate the normalized histogram */ term = 1.0 / (double) num_pixels; for (i = 0; i < HISTOGRAM_SIZE; i++) histo[i] = term * (double) histo_data[i]; free (histo_data); return histo; } /* Create the normalized histogram of a grayscale image */ SANE_Status sanei_ir_create_norm_histogram (const SANE_Parameters * params, const SANE_Uint *img_data, double ** histogram) { double *histo; DBG (10, "sanei_ir_create_norm_histogram\n"); histo = sanei_ir_create_norm_histo (params, img_data); if (!histo) return SANE_STATUS_NO_MEM; *histogram = histo; return SANE_STATUS_GOOD; } /* Accumulate a normalized histogram, internal */ double * sanei_ir_accumulate_norm_histo (double * histo_data) { int i; double *accum_data; accum_data = malloc (HISTOGRAM_SIZE * sizeof (double)); if (accum_data == NULL) { DBG (5, "sanei_ir_accumulate_norm_histo: Insufficient memory !\n"); return NULL; } accum_data[0] = histo_data[0]; for (i = 1; i < HISTOGRAM_SIZE; i++) accum_data[i] = accum_data[i - 1] + histo_data[i]; return accum_data; } /* Implements Yen's thresholding method */ SANE_Status sanei_ir_threshold_yen (const SANE_Parameters * params, double * norm_histo, int *thresh) { double *P1 = NULL; /* cumulative normalized histogram */ double *P1_sq = NULL; /* cumulative normalized histogram */ double *P2_sq = NULL; double crit, max_crit; int threshold, i; SANE_Status ret = SANE_STATUS_NO_MEM; DBG (10, "sanei_ir_threshold_yen\n"); P1 = sanei_ir_accumulate_norm_histo (norm_histo); P1_sq = malloc (HISTOGRAM_SIZE * sizeof (double)); P2_sq = malloc (HISTOGRAM_SIZE * sizeof (double)); if (!P1 || !P1_sq || !P2_sq) { DBG (5, "sanei_ir_threshold_yen: no buffers\n"); goto cleanup; } /* calculate cumulative squares */ P1_sq[0] = norm_histo[0] * norm_histo[0]; for (i = 1; i < HISTOGRAM_SIZE; i++) P1_sq[i] = P1_sq[i - 1] + norm_histo[i] * norm_histo[i]; P2_sq[HISTOGRAM_SIZE - 1] = 0.0; for (i = HISTOGRAM_SIZE - 2; i >= 0; i--) P2_sq[i] = P2_sq[i + 1] + norm_histo[i + 1] * norm_histo[i + 1]; /* Find the threshold that maximizes the criterion */ threshold = INT_MIN; max_crit = DBL_MIN; for (i = 0; i < HISTOGRAM_SIZE; i++) { crit = -1.0 * SAFE_LOG (P1_sq[i] * P2_sq[i]) + 2 * SAFE_LOG (P1[i] * (1.0 - P1[i])); if (crit > max_crit) { max_crit = crit; threshold = i; } } if (threshold == INT_MIN) { DBG (5, "sanei_ir_threshold_yen: no threshold found\n"); ret = SANE_STATUS_INVAL; } else { ret = SANE_STATUS_GOOD; if (params->depth > 8) { i = 1 << (params->depth - HISTOGRAM_SHIFT); *thresh = threshold * i + i / 2; } else *thresh = threshold; DBG (10, "sanei_ir_threshold_yen: threshold %d\n", *thresh); } cleanup: if (P1) free (P1); if (P1_sq) free (P1_sq); if (P2_sq) free (P2_sq); return ret; } /* Implements Otsu's thresholding method */ SANE_Status sanei_ir_threshold_otsu (const SANE_Parameters * params, double * norm_histo, int *thresh) { double *cnh = NULL; double *mean = NULL; double total_mean; double bcv, max_bcv; int first_bin, last_bin; int threshold, i; SANE_Status ret = SANE_STATUS_NO_MEM; DBG (10, "sanei_ir_threshold_otsu\n"); cnh = sanei_ir_accumulate_norm_histo (norm_histo); mean = malloc (HISTOGRAM_SIZE * sizeof (double)); if (!cnh || !mean) { DBG (5, "sanei_ir_threshold_otsu: no buffers\n"); goto cleanup; } mean[0] = 0.0; for (i = 1; i < HISTOGRAM_SIZE; i++) mean[i] = mean[i - 1] + i * norm_histo[i]; total_mean = mean[HISTOGRAM_SIZE - 1]; first_bin = 0; for (i = 0; i < HISTOGRAM_SIZE; i++) if (cnh[i] != 0) { first_bin = i; break; } last_bin = HISTOGRAM_SIZE - 1; for (i = HISTOGRAM_SIZE - 1; i >= first_bin; i--) if (1.0 - cnh[i] != 0) { last_bin = i; break; } threshold = INT_MIN; max_bcv = 0.0; for (i = first_bin; i <= last_bin; i++) { bcv = total_mean * cnh[i] - mean[i]; bcv *= bcv / (cnh[i] * (1.0 - cnh[i])); if (max_bcv < bcv) { max_bcv = bcv; threshold = i; } } if (threshold == INT_MIN) { DBG (5, "sanei_ir_threshold_otsu: no threshold found\n"); ret = SANE_STATUS_INVAL; } else { ret = SANE_STATUS_GOOD; if (params->depth > 8) { i = 1 << (params->depth - HISTOGRAM_SHIFT); *thresh = threshold * i + i / 2; } else *thresh = threshold; DBG (10, "sanei_ir_threshold_otsu: threshold %d\n", *thresh); } cleanup: if (cnh) free (cnh); if (mean) free (mean); return ret; } /* Implements a Maximum Entropy thresholding method */ SANE_Status sanei_ir_threshold_maxentropy (const SANE_Parameters * params, double * norm_histo, int *thresh) { int ih, it; int threshold; int first_bin; int last_bin; double tot_ent, max_ent; /* entropies */ double ent_back, ent_obj; double *P1; /* cumulative normalized histogram */ double *P2; SANE_Status ret = SANE_STATUS_NO_MEM; DBG (10, "sanei_ir_threshold_maxentropy\n"); /* Calculate the cumulative normalized histogram */ P1 = sanei_ir_accumulate_norm_histo (norm_histo); P2 = malloc (HISTOGRAM_SIZE * sizeof (double)); if (!P1 || !P2) { DBG (5, "sanei_ir_threshold_maxentropy: no buffers\n"); goto cleanup; } for ( ih = 0; ih < HISTOGRAM_SIZE; ih++ ) P2[ih] = 1.0 - P1[ih]; first_bin = 0; for ( ih = 0; ih < HISTOGRAM_SIZE; ih++ ) if (P1[ih] != 0) { first_bin = ih; break; } last_bin = HISTOGRAM_SIZE - 1; for ( ih = HISTOGRAM_SIZE - 1; ih >= first_bin; ih-- ) if (P2[ih] != 0) { last_bin = ih; break; } /* Calculate the total entropy each gray-level * and find the threshold that maximizes it */ threshold = INT_MIN; max_ent = DBL_MIN; for ( it = first_bin; it <= last_bin; it++ ) { /* Entropy of the background pixels */ ent_back = 0.0; for ( ih = 0; ih <= it; ih++ ) if (norm_histo[ih] != 0) ent_back -= ( norm_histo[ih] / P1[it] ) * log ( norm_histo[ih] / P1[it] ); /* Entropy of the object pixels */ ent_obj = 0.0; for ( ih = it + 1; ih < HISTOGRAM_SIZE; ih++ ) if (norm_histo[ih] != 0) ent_obj -= ( norm_histo[ih] / P2[it] ) * log ( norm_histo[ih] / P2[it] ); /* Total entropy */ tot_ent = ent_back + ent_obj; if ( max_ent < tot_ent ) { max_ent = tot_ent; threshold = it; } } if (threshold == INT_MIN) { DBG (5, "sanei_ir_threshold_maxentropy: no threshold found\n"); ret = SANE_STATUS_INVAL; } else { ret = SANE_STATUS_GOOD; if (params->depth > 8) { it = 1 << (params->depth - HISTOGRAM_SHIFT); *thresh = threshold * it + it / 2; } else *thresh = threshold; DBG (10, "sanei_ir_threshold_maxentropy: threshold %d\n", *thresh); } cleanup: if (P1) free (P1); if (P2) free (P2); return ret; } /* Generate gray scale luminance image from separate R, G, B images */ SANE_Status sanei_ir_RGB_luminance (SANE_Parameters * params, const SANE_Uint **in_img, SANE_Uint **out_img) { SANE_Uint *outi; int itop, i; if ((params->depth < 8) || (params->depth > 16) || (params->format != SANE_FRAME_GRAY)) { DBG (5, "sanei_ir_RGB_luminance: invalid format\n"); return SANE_STATUS_UNSUPPORTED; } itop = params->pixels_per_line * params->lines; outi = malloc (itop * sizeof(SANE_Uint)); if (!outi) { DBG (5, "sanei_ir_RGB_luminance: can not allocate out_img\n"); return SANE_STATUS_NO_MEM; } for (i = itop; i > 0; i--) *(outi++) = (218 * (int) *(in_img[0]++) + 732 * (int) *(in_img[1]++) + 74 * (int) *(in_img[2]++)) >> 10; *out_img = outi; return SANE_STATUS_GOOD; } /* Convert image from >8 bit depth to an 8 bit image */ SANE_Status sanei_ir_to_8bit (SANE_Parameters * params, const SANE_Uint *in_img, SANE_Parameters * out_params, SANE_Uint **out_img) { SANE_Uint *outi; size_t ssize; int i, is; if ((params->depth < 8) || (params->depth > 16)) { DBG (5, "sanei_ir_to_8bit: invalid format\n"); return SANE_STATUS_UNSUPPORTED; } ssize = params->pixels_per_line * params->lines; if (params->format == SANE_FRAME_RGB) ssize *= 3; outi = malloc (ssize * sizeof(SANE_Uint)); if (!outi) { DBG (5, "sanei_ir_to_8bit: can not allocate out_img\n"); return SANE_STATUS_NO_MEM; } if (out_params) { memmove (out_params, params, sizeof(SANE_Parameters)); out_params->bytes_per_line = out_params->pixels_per_line; if (params->format == SANE_FRAME_RGB) out_params->bytes_per_line *= 3; out_params->depth = 8; } memmove (outi, in_img, ssize * sizeof(SANE_Uint)); is = params->depth - 8; for (i = ssize; i > 0; i--) { *outi = *outi >> is, outi += 2; } *out_img = outi; return SANE_STATUS_GOOD; } /* allocate and initialize logarithmic lookup table */ SANE_Status sanei_ir_ln_table (int len, double **lut_ln) { double *llut; int i; DBG (10, "sanei_ir_ln_table\n"); llut = malloc (len * sizeof (double)); if (!llut) { DBG (5, "sanei_ir_ln_table: no table\n"); return SANE_STATUS_NO_MEM; } llut[0] = 0; llut[1] = 0; for (i = 2; i < len; i++) llut[i] = log ((double) i); *lut_ln = llut; return SANE_STATUS_GOOD; } /* Reduce red spectral overlap from an infrared image plane */ SANE_Status sanei_ir_spectral_clean (const SANE_Parameters * params, double *lut_ln, const SANE_Uint *red_data, SANE_Uint *ir_data) { const SANE_Uint *rptr; SANE_Uint *iptr; SANE_Int depth; double *llut; double rval, rsum, rrsum; double risum, rfac, radd; double *norm_histo; int64_t isum; int *calc_buf, *calc_ptr; int ival, imin, imax; int itop, len, ssize; int thresh_low, thresh; int irand, i; SANE_Status status; DBG (10, "sanei_ir_spectral_clean\n"); itop = params->pixels_per_line * params->lines; calc_buf = malloc (itop * sizeof (int)); /* could save this */ if (!calc_buf) { DBG (5, "sanei_ir_spectral_clean: no buffer\n"); return SANE_STATUS_NO_MEM; } depth = params->depth; len = 1 << depth; if (lut_ln) llut = lut_ln; else { status = sanei_ir_ln_table (len, &llut); if (status != SANE_STATUS_GOOD) { free (calc_buf); return status; } } /* determine not transparent areas to exclude them later * TODO: this has not been tested for negatives */ thresh_low = INT_MAX; status = sanei_ir_create_norm_histogram (params, ir_data, &norm_histo); if (status != SANE_STATUS_GOOD) { DBG (5, "sanei_ir_spectral_clean: no buffer\n"); free (calc_buf); return SANE_STATUS_NO_MEM; } /* TODO: remember only needed if cropping is not ok */ status = sanei_ir_threshold_maxentropy (params, norm_histo, &thresh); if (status == SANE_STATUS_GOOD) thresh_low = thresh; status = sanei_ir_threshold_otsu (params, norm_histo, &thresh); if ((status == SANE_STATUS_GOOD) && (thresh < thresh_low)) thresh_low = thresh; status = sanei_ir_threshold_yen (params, norm_histo, &thresh); if ((status == SANE_STATUS_GOOD) && (thresh < thresh_low)) thresh_low = thresh; if (thresh_low == INT_MAX) thresh_low = 0; else thresh_low /= 2; DBG (10, "sanei_ir_spectral_clean: low threshold %d\n", thresh_low); /* calculate linear regression ired (red) from randomly chosen points */ ssize = itop / 2; if (SAMPLE_SIZE < ssize) ssize = SAMPLE_SIZE; isum = 0; rsum = rrsum = risum = 0.0; i = ssize; while (i > 0) { irand = rand () % itop; rval = llut[red_data[irand]]; ival = ir_data[irand]; if (ival > thresh_low) { isum += ival; rsum += rval; rrsum += rval * rval; risum += rval * (double) ival; i--; } } /* "a" in ired = b + a * ln (red) */ rfac = ((double) ssize * risum - rsum * (double) isum) / ((double) ssize * rrsum - rsum * rsum); radd = ((double) isum - rfac * rsum) / (double) ssize; /* "b" unused */ DBG (10, "sanei_ir_spectral_clean: n = %d, ired(red) = %f * ln(red) + %f\n", ssize, rfac, radd); /* now calculate ired' = ired - a * ln (red) */ imin = INT_MAX; imax = INT_MIN; rptr = red_data; iptr = ir_data; calc_ptr = calc_buf; for (i = itop; i > 0; i--) { ival = *iptr++ - (int) (rfac * llut[*rptr++] + 0.5); if (ival > imax) imax = ival; if (ival < imin) imin = ival; *calc_ptr++ = ival; } /* scale the result back into the ired image */ calc_ptr = calc_buf; iptr = ir_data; rfac = (double) (len - 1) / (double) (imax - imin); for (i = itop; i > 0; i--) *iptr++ = (double) (*calc_ptr++ - imin) * rfac; if (!lut_ln) free (llut); free (calc_buf); free (norm_histo); return SANE_STATUS_GOOD; } /* Hopefully fast mean filter * JV: what does this do? Remove local mean? */ SANE_Status sanei_ir_filter_mean (const SANE_Parameters * params, const SANE_Uint *in_img, SANE_Uint *out_img, int win_rows, int win_cols) { const SANE_Uint *src; SANE_Uint *dest; int num_cols, num_rows; int itop, iadd, isub; int ndiv, the_sum; int nrow, ncol; int hwr, hwc; int *sum; int i, j; DBG (10, "sanei_ir_filter_mean, window: %d x%d\n", win_rows, win_cols); if (((win_rows & 1) == 0) || ((win_cols & 1) == 0)) { DBG (5, "sanei_ir_filter_mean: window even sized\n"); return SANE_STATUS_INVAL; } num_cols = params->pixels_per_line; num_rows = params->lines; sum = malloc (num_cols * sizeof (int)); if (!sum) { DBG (5, "sanei_ir_filter_mean: no buffer for sums\n"); return SANE_STATUS_NO_MEM; } dest = out_img; hwr = win_rows / 2; /* half window sizes */ hwc = win_cols / 2; /* pre-pre calculation */ for (j = 0; j < num_cols; j++) { sum[j] = 0; src = in_img + j; for (i = 0; i < hwr; i++) { sum[j] += *src; src += num_cols; } } itop = num_rows * num_cols; iadd = hwr * num_cols; isub = (hwr - win_rows) * num_cols; nrow = hwr; for (i = 0; i < num_rows; i++) { /* update row sums if possible */ if (isub >= 0) /* subtract old row */ { nrow--; src = in_img + isub; for (j = 0; j < num_cols; j++) sum[j] -= *src++; } isub += num_cols; if (iadd < itop) /* add new row */ { nrow++; src = in_img + iadd; for (j = 0; j < num_cols; j++) sum[j] += *src++; } iadd += num_cols; /* now we do the image columns using only the precalculated sums */ the_sum = 0; /* precalculation */ for (j = 0; j < hwc; j++) the_sum += sum[j]; ncol = hwc; /* at the left margin, real index hwc lower */ for (j = hwc; j < win_cols; j++) { ncol++; the_sum += sum[j]; *dest++ = the_sum / (ncol * nrow); } ndiv = ncol * nrow; /* in the middle, real index hwc + 1 higher */ for (j = 0; j < num_cols - win_cols; j++) { the_sum -= sum[j]; the_sum += sum[j + win_cols]; *dest++ = the_sum / ndiv; } /* at the right margin, real index hwc + 1 higher */ for (j = num_cols - win_cols; j < num_cols - hwc - 1; j++) { ncol--; the_sum -= sum[j]; /* j - hwc - 1 */ *dest++ = the_sum / (ncol * nrow); } } free (sum); return SANE_STATUS_GOOD; } /* Find noise by adaptive thresholding */ SANE_Status sanei_ir_filter_madmean (const SANE_Parameters * params, const SANE_Uint *in_img, SANE_Uint ** out_img, int win_size, int a_val, int b_val) { SANE_Uint *delta_ij, *delta_ptr; SANE_Uint *mad_ij; const SANE_Uint *mad_ptr; SANE_Uint *out_ij, *dest8; double ab_term; int num_rows, num_cols; int threshold, itop; size_t size; int ival, i; int depth; SANE_Status ret = SANE_STATUS_NO_MEM; DBG (10, "sanei_ir_filter_madmean\n"); depth = params->depth; if (depth != 8) { a_val = a_val << (depth - 8); b_val = b_val << (depth - 8); } num_cols = params->pixels_per_line; num_rows = params->lines; itop = num_rows * num_cols; size = itop * sizeof (SANE_Uint); out_ij = malloc (size); delta_ij = malloc (size); mad_ij = malloc (size); if (out_ij && delta_ij && mad_ij) { /* get the differences to the local mean */ mad_ptr = in_img; if (sanei_ir_filter_mean (params, mad_ptr, delta_ij, win_size, win_size) == SANE_STATUS_GOOD) { delta_ptr = delta_ij; for (i = 0; i < itop; i++) { ival = *mad_ptr++ - *delta_ptr; *delta_ptr++ = abs (ival); } /* make the second filtering window a bit larger */ win_size = MAD_WIN2_SIZE(win_size); /* and get the local mean differences */ if (sanei_ir_filter_mean (params, delta_ij, mad_ij, win_size, win_size) == SANE_STATUS_GOOD) { mad_ptr = mad_ij; delta_ptr = delta_ij; dest8 = out_ij; /* construct the noise map */ ab_term = (b_val - a_val) / (double) b_val; for (i = 0; i < itop; i++) { /* by calculating the threshold */ ival = *mad_ptr++; if (ival >= b_val) /* outlier */ threshold = a_val; else threshold = a_val + (double) ival *ab_term; /* above threshold is noise, indicated by 0 */ if (*delta_ptr++ >= threshold) *dest8++ = 0; else *dest8++ = 255; } *out_img = out_ij; ret = SANE_STATUS_GOOD; } } } else DBG (5, "sanei_ir_filter_madmean: Cannot allocate buffers\n"); free (mad_ij); free (delta_ij); return ret; } /* Add dark pixels to mask from static threshold */ void sanei_ir_add_threshold (const SANE_Parameters * params, const SANE_Uint *in_img, SANE_Uint * mask_img, int threshold) { const SANE_Uint *in_ptr; SANE_Uint *mask_ptr; int itop, i; DBG (10, "sanei_ir_add_threshold\n"); itop = params->pixels_per_line * params->lines; in_ptr = in_img; mask_ptr = mask_img; for (i = itop; i > 0; i--) { if (*in_ptr++ <= threshold) *mask_ptr = 0; mask_ptr++; } } /* Calculate minimal Manhattan distances for an image mask */ void sanei_ir_manhattan_dist (const SANE_Parameters * params, const SANE_Uint * mask_img, unsigned int *dist_map, unsigned int *idx_map, unsigned int erode) { const SANE_Uint *mask; unsigned int *index, *manhattan; int rows, cols, itop; int i, j; DBG (10, "sanei_ir_manhattan_dist\n"); if (erode != 0) erode = 255; /* initialize maps */ cols = params->pixels_per_line; rows = params->lines; itop = rows * cols; mask = mask_img; manhattan = dist_map; index = idx_map; for (i = 0; i < itop; i++) { *manhattan++ = *mask++; *index++ = i; } /* traverse from top left to bottom right */ manhattan = dist_map; index = idx_map; for (i = 0; i < rows; i++) for (j = 0; j < cols; j++) { if (*manhattan == erode) { /* take original, distance = 0, index stays the same */ *manhattan = 0; } else { /* assume maximal distance to clean pixel */ *manhattan = cols + rows; /* or one further away than pixel to the top */ if (i > 0) if (manhattan[-cols] + 1 < *manhattan) { *manhattan = manhattan[-cols] + 1; *index = index[-cols]; /* index follows */ } /* or one further away than pixel to the left */ if (j > 0) { if (manhattan[-1] + 1 < *manhattan) { *manhattan = manhattan[-1] + 1; *index = index[-1]; /* index follows */ } if (manhattan[-1] + 1 == *manhattan) if (rand () % 2 == 0) /* chose index */ *index = index[-1]; } } manhattan++; index++; } /* traverse from bottom right to top left */ manhattan = dist_map + itop - 1; index = idx_map + itop - 1; for (i = rows - 1; i >= 0; i--) for (j = cols - 1; j >= 0; j--) { if (i < rows - 1) { /* either what we had on the first pass or one more than the pixel to the bottm */ if (manhattan[+cols] + 1 < *manhattan) { *manhattan = manhattan[+cols] + 1; *index = index[+cols]; /* index follows */ } if (manhattan[+cols] + 1 == *manhattan) if (rand () % 2 == 0) /* chose index */ *index = index[+cols]; } if (j < cols - 1) { /* or one more than pixel to the right */ if (manhattan[1] + 1 < *manhattan) { *manhattan = manhattan[1] + 1; *index = index[1]; /* index follows */ } if (manhattan[1] + 1 == *manhattan) if (rand () % 2 == 0) /* chose index */ *index = index[1]; } manhattan--; index--; } } /* dilate or erode a mask image */ void sanei_ir_dilate (const SANE_Parameters *params, SANE_Uint *mask_img, unsigned int *dist_map, unsigned int *idx_map, int by) { SANE_Uint *mask; unsigned int *manhattan; unsigned int erode; unsigned int thresh; int i, itop; DBG (10, "sanei_ir_dilate\n"); if (by == 0) return; if (by > 0) { erode = 0; thresh = by; } else { erode = 1; thresh = -by; } itop = params->pixels_per_line * params->lines; mask = mask_img; sanei_ir_manhattan_dist (params, mask_img, dist_map, idx_map, erode); manhattan = dist_map; for (i = 0; i < itop; i++) { if (*manhattan++ <= thresh) *mask++ = 0; else *mask++ = 255; } return; } /* Suggest cropping for dark margins of positive film */ void sanei_ir_find_crop (const SANE_Parameters * params, unsigned int * dist_map, int inner, int * edges) { int width = params->pixels_per_line; int height = params->lines; uint64_t sum_x, sum_y, n; int64_t sum_xx, sum_xy; double a, b, mami; unsigned int *src; int off1, off2, inc, wh, i, j; DBG (10, "sanei_ir_find_crop\n"); /* loop through top, bottom, left, right */ for (j = 0; j < 4; j++) { if (j < 2) /* top, bottom */ { off1 = width / 8; /* only middle 3/4 */ off2 = width - off1; n = width - 2 * off1; src = dist_map + off1; /* first row */ inc = 1; wh = width; if (j == 1) /* last row */ src += (height - 1) * width; } else /* left, right */ { off1 = height / 8; /* only middle 3/4 */ off2 = height - off1; n = height - 2 * off1; src = dist_map + (off1 * width); /* first column */ inc = width; wh = height; if (j == 3) src += width - 1; /* last column */ } /* calculate linear regression */ sum_x = 0; sum_y = 0; sum_xx = 0; sum_xy = 0; for (i = off1; i < off2; i++) { sum_x += i; sum_y += *src; sum_xx += i * i; sum_xy += i * (*src); src += inc; } b = ((double) n * (double) sum_xy - (double) sum_x * (double) sum_y) / ((double) n * (double) sum_xx - (double) sum_x * (double) sum_x); a = ((double) sum_y - b * (double) sum_x) / (double) n; DBG (10, "sanei_ir_find_crop: y = %f + %f * x\n", a, b); /* take maximal/minimal value from either side */ mami = a + b * (wh - 1); if (inner) { if (a > mami) mami = a; } else { if (a < mami) mami = a; } edges[j] = mami + 0.5; } edges[1] = height - edges[1]; edges[3] = width - edges[3]; DBG (10, "sanei_ir_find_crop: would crop at top: %d, bot: %d, left %d, right %d\n", edges[0], edges[1], edges[2], edges[3]); return; } /* Dilate clean image parts into dirty ones and smooth */ SANE_Status sanei_ir_dilate_mean (const SANE_Parameters * params, SANE_Uint **in_img, SANE_Uint * mask_img, int dist_max, int expand, int win_size, SANE_Bool smooth, int inner, int *crop) { SANE_Uint *color; SANE_Uint *plane; unsigned int *dist_map, *manhattan; unsigned int *idx_map, *index; int dist; int rows, cols; int k, i, itop; SANE_Status ret = SANE_STATUS_NO_MEM; DBG (10, "sanei_ir_dilate_mean(): dist max = %d, expand = %d, win size = %d, smooth = %d, inner = %d\n", dist_max, expand, win_size, smooth, inner); cols = params->pixels_per_line; rows = params->lines; itop = rows * cols; idx_map = malloc (itop * sizeof (unsigned int)); dist_map = malloc (itop * sizeof (unsigned int)); plane = malloc (itop * sizeof (SANE_Uint)); if (!idx_map || !dist_map || !plane) DBG (5, "sanei_ir_dilate_mean: Cannot allocate buffers\n"); else { /* expand dirty regions into their half dirty surround*/ if (expand > 0) sanei_ir_dilate (params, mask_img, dist_map, idx_map, expand); /* for dirty pixels determine the closest clean ones */ sanei_ir_manhattan_dist (params, mask_img, dist_map, idx_map, 1); /* use the distance map to find how to crop dark edges */ if (crop) sanei_ir_find_crop (params, dist_map, inner, crop); /* replace dirty pixels */ for (k = 0; k < 3; k++) { manhattan = dist_map; index = idx_map; color = in_img[k]; /* first replacement */ for (i = 0; i < itop; i++) { dist = *manhattan++; if ((dist != 0) && (dist <= dist_max)) color[i] = color[index[i]]; } /* adapt pixels to their new surround and * smooth the whole image or the replaced pixels only */ ret = sanei_ir_filter_mean (params, color, plane, win_size, win_size); if (ret != SANE_STATUS_GOOD) break; else if (smooth) { /* a second mean results in triangular blur */ DBG (10, "sanei_ir_dilate_mean(): smoothing whole image\n"); ret = sanei_ir_filter_mean (params, plane, color, win_size, win_size); if (ret != SANE_STATUS_GOOD) break; } else { /* replace with smoothened pixels only */ DBG (10, "sanei_ir_dilate_mean(): smoothing replaced pixels only\n"); manhattan = dist_map; for (i = 0; i < itop; i++) { dist = *manhattan++; if ((dist != 0) && (dist <= dist_max)) color[i] = plane[i]; } } } } free (plane); free (dist_map); free (idx_map); return ret; }