1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
|
/*
* Reimplementation of Deflate (RFC1951) compression. Adapted from
* the version in PuTTY, and extended to write dynamic Huffman
* trees and choose block boundaries usefully.
*/
/*
* TODO:
*
* - Feature: could do with forms of flush other than SYNC_FLUSH.
* I'm not sure exactly how those work when you don't know in
* advance that your next block will be static (as we did in
* PuTTY). And remember the 9-bit limitation of zlib.
* + also, zlib has FULL_FLUSH which clears the LZ77 state as
* well, for random access.
*
* - Compression quality: chooseblock() appears to be computing
* wildly inaccurate block size estimates. Possible resolutions:
* + find and fix some trivial bug I haven't spotted yet
* + abandon the entropic approximation and go with trial
* Huffman runs
*
* - Compression quality: see if increasing SYMLIMIT causes
* dynamic blocks to start being consistently smaller than it.
* + actually we seem to be there already, but check on a
* larger corpus.
*
* - Compression quality: we ought to be able to fall right back
* to actual uncompressed blocks if really necessary, though
* it's not clear what the criterion for doing so would be.
*/
/*
* This software is copyright 2000-2006 Simon Tatham.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
* IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stddef.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include "deflate.h"
#define snew(type) ( (type *) malloc(sizeof(type)) )
#define snewn(n, type) ( (type *) malloc((n) * sizeof(type)) )
#define sresize(x, n, type) ( (type *) realloc((x), (n) * sizeof(type)) )
#define sfree(x) ( free((x)) )
#define lenof(x) (sizeof((x)) / sizeof(*(x)))
#ifndef FALSE
#define FALSE 0
#define TRUE (!FALSE)
#endif
/* ----------------------------------------------------------------------
* This file can be compiled in a number of modes.
*
* With -DSTANDALONE, it builds a self-contained deflate tool which
* can compress, decompress, and also analyse a deflated file to
* print out the sequence of literals and copy commands it
* contains.
*
* With -DTESTMODE, it builds a test application which is given a
* file on standard input, both compresses and decompresses it, and
* outputs the re-decompressed result so it can be conveniently
* diffed against the original. Define -DTESTDBG as well for lots
* of diagnostics.
*/
#if defined TESTDBG
/* gcc-specific diagnostic macro */
#define debug_int(x...) ( fprintf(stderr, x) )
#define debug(x) ( debug_int x )
#else
#define debug(x)
#endif
#ifdef STANDALONE
#define ANALYSIS
#endif
#ifdef ANALYSIS
int analyse_level = 0;
#endif
/* ----------------------------------------------------------------------
* Basic LZ77 code. This bit is designed modularly, so it could be
* ripped out and used in a different LZ77 compressor. Go to it,
* and good luck :-)
*/
struct LZ77InternalContext;
struct LZ77Context {
struct LZ77InternalContext *ictx;
void *userdata;
void (*literal) (struct LZ77Context * ctx, unsigned char c);
void (*match) (struct LZ77Context * ctx, int distance, int len);
};
/*
* Initialise the private fields of an LZ77Context. It's up to the
* user to initialise the public fields.
*/
static int lz77_init(struct LZ77Context *ctx);
/*
* Supply data to be compressed. Will update the private fields of
* the LZ77Context, and will call literal() and match() to output.
* If `compress' is FALSE, it will never emit a match, but will
* instead call literal() for everything.
*/
static void lz77_compress(struct LZ77Context *ctx,
const unsigned char *data, int len, int compress);
/*
* Modifiable parameters.
*/
#define WINSIZE 32768 /* window size. Must be power of 2! */
#define HASHMAX 2039 /* one more than max hash value */
#define MAXMATCH 32 /* how many matches we track */
#define HASHCHARS 3 /* how many chars make a hash */
/*
* This compressor takes a less slapdash approach than the
* gzip/zlib one. Rather than allowing our hash chains to fall into
* disuse near the far end, we keep them doubly linked so we can
* _find_ the far end, and then every time we add a new byte to the
* window (thus rolling round by one and removing the previous
* byte), we can carefully remove the hash chain entry.
*/
#define INVALID -1 /* invalid hash _and_ invalid offset */
struct WindowEntry {
short next, prev; /* array indices within the window */
short hashval;
};
struct HashEntry {
short first; /* window index of first in chain */
};
struct Match {
int distance, len;
};
struct LZ77InternalContext {
struct WindowEntry win[WINSIZE];
unsigned char data[WINSIZE];
int winpos;
struct HashEntry hashtab[HASHMAX];
unsigned char pending[HASHCHARS];
int npending;
};
static int lz77_hash(const unsigned char *data)
{
return (257 * data[0] + 263 * data[1] + 269 * data[2]) % HASHMAX;
}
static int lz77_init(struct LZ77Context *ctx)
{
struct LZ77InternalContext *st;
int i;
st = snew(struct LZ77InternalContext);
if (!st)
return 0;
ctx->ictx = st;
for (i = 0; i < WINSIZE; i++)
st->win[i].next = st->win[i].prev = st->win[i].hashval = INVALID;
for (i = 0; i < HASHMAX; i++)
st->hashtab[i].first = INVALID;
st->winpos = 0;
st->npending = 0;
return 1;
}
static void lz77_advance(struct LZ77InternalContext *st,
unsigned char c, int hash)
{
int off;
/*
* Remove the hash entry at winpos from the tail of its chain,
* or empty the chain if it's the only thing on the chain.
*/
if (st->win[st->winpos].prev != INVALID) {
st->win[st->win[st->winpos].prev].next = INVALID;
} else if (st->win[st->winpos].hashval != INVALID) {
st->hashtab[st->win[st->winpos].hashval].first = INVALID;
}
/*
* Create a new entry at winpos and add it to the head of its
* hash chain.
*/
st->win[st->winpos].hashval = hash;
st->win[st->winpos].prev = INVALID;
off = st->win[st->winpos].next = st->hashtab[hash].first;
st->hashtab[hash].first = st->winpos;
if (off != INVALID)
st->win[off].prev = st->winpos;
st->data[st->winpos] = c;
/*
* Advance the window pointer.
*/
st->winpos = (st->winpos + 1) & (WINSIZE - 1);
}
#define CHARAT(k) ( (k)<0 ? st->data[(st->winpos+k)&(WINSIZE-1)] : data[k] )
static void lz77_compress(struct LZ77Context *ctx,
const unsigned char *data, int len, int compress)
{
struct LZ77InternalContext *st = ctx->ictx;
int i, hash, distance, off, nmatch, matchlen, advance;
struct Match defermatch, matches[MAXMATCH];
int deferchr;
/*
* Add any pending characters from last time to the window. (We
* might not be able to.)
*/
for (i = 0; i < st->npending; i++) {
unsigned char foo[HASHCHARS];
int j;
if (len + st->npending - i < HASHCHARS) {
/* Update the pending array. */
for (j = i; j < st->npending; j++)
st->pending[j - i] = st->pending[j];
break;
}
for (j = 0; j < HASHCHARS; j++)
foo[j] = (i + j < st->npending ? st->pending[i + j] :
data[i + j - st->npending]);
lz77_advance(st, foo[0], lz77_hash(foo));
}
st->npending -= i;
defermatch.len = 0;
deferchr = '\0';
while (len > 0) {
/* Don't even look for a match, if we're not compressing. */
if (compress && len >= HASHCHARS) {
/*
* Hash the next few characters.
*/
hash = lz77_hash(data);
/*
* Look the hash up in the corresponding hash chain and see
* what we can find.
*/
nmatch = 0;
for (off = st->hashtab[hash].first;
off != INVALID; off = st->win[off].next) {
/* distance = 1 if off == st->winpos-1 */
/* distance = WINSIZE if off == st->winpos */
distance =
WINSIZE - (off + WINSIZE - st->winpos) % WINSIZE;
for (i = 0; i < HASHCHARS; i++)
if (CHARAT(i) != CHARAT(i - distance))
break;
if (i == HASHCHARS) {
matches[nmatch].distance = distance;
matches[nmatch].len = 3;
if (++nmatch >= MAXMATCH)
break;
}
}
} else {
nmatch = 0;
hash = INVALID;
}
if (nmatch > 0) {
/*
* We've now filled up matches[] with nmatch potential
* matches. Follow them down to find the longest. (We
* assume here that it's always worth favouring a
* longer match over a shorter one.)
*/
matchlen = HASHCHARS;
while (matchlen < len) {
int j;
for (i = j = 0; i < nmatch; i++) {
if (CHARAT(matchlen) ==
CHARAT(matchlen - matches[i].distance)) {
matches[j++] = matches[i];
}
}
if (j == 0)
break;
matchlen++;
nmatch = j;
}
/*
* We've now got all the longest matches. We favour the
* shorter distances, which means we go with matches[0].
* So see if we want to defer it or throw it away.
*/
matches[0].len = matchlen;
if (defermatch.len > 0) {
if (matches[0].len > defermatch.len + 1) {
/* We have a better match. Emit the deferred char,
* and defer this match. */
ctx->literal(ctx, (unsigned char) deferchr);
defermatch = matches[0];
deferchr = data[0];
advance = 1;
} else {
/* We don't have a better match. Do the deferred one. */
ctx->match(ctx, defermatch.distance, defermatch.len);
advance = defermatch.len - 1;
defermatch.len = 0;
}
} else {
/* There was no deferred match. Defer this one. */
defermatch = matches[0];
deferchr = data[0];
advance = 1;
}
} else {
/*
* We found no matches. Emit the deferred match, if
* any; otherwise emit a literal.
*/
if (defermatch.len > 0) {
ctx->match(ctx, defermatch.distance, defermatch.len);
advance = defermatch.len - 1;
defermatch.len = 0;
} else {
ctx->literal(ctx, data[0]);
advance = 1;
}
}
/*
* Now advance the position by `advance' characters,
* keeping the window and hash chains consistent.
*/
while (advance > 0) {
if (len >= HASHCHARS) {
lz77_advance(st, *data, lz77_hash(data));
} else {
st->pending[st->npending++] = *data;
}
data++;
len--;
advance--;
}
}
}
/* ----------------------------------------------------------------------
* Deflate functionality common to both compression and decompression.
*/
static const unsigned char lenlenmap[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
};
#define MAXCODELEN 16
/*
* Given a sequence of Huffman code lengths, compute the actual
* codes, in the final form suitable for feeding to outbits (i.e.
* already bit-mirrored).
*
* Returns the maximum code length found. Can also return -1 to
* indicate the table was overcommitted (too many or too short
* codes to exactly cover the possible space), or -2 to indicate it
* was undercommitted (too few or too long codes).
*/
static int hufcodes(const unsigned char *lengths, int *codes, int nsyms)
{
int count[MAXCODELEN], startcode[MAXCODELEN];
int code, maxlen;
int i, j;
/* Count the codes of each length. */
maxlen = 0;
for (i = 1; i < MAXCODELEN; i++)
count[i] = 0;
for (i = 0; i < nsyms; i++) {
count[lengths[i]]++;
if (maxlen < lengths[i])
maxlen = lengths[i];
}
/* Determine the starting code for each length block. */
code = 0;
for (i = 1; i < MAXCODELEN; i++) {
startcode[i] = code;
code += count[i];
if (code > (1 << i))
maxlen = -1; /* overcommitted */
code <<= 1;
}
if (code < (1 << MAXCODELEN))
maxlen = -2; /* undercommitted */
/* Determine the code for each symbol. Mirrored, of course. */
for (i = 0; i < nsyms; i++) {
code = startcode[lengths[i]]++;
codes[i] = 0;
for (j = 0; j < lengths[i]; j++) {
codes[i] = (codes[i] << 1) | (code & 1);
code >>= 1;
}
}
return maxlen;
}
/*
* Adler32 checksum function.
*/
static unsigned long adler32_update(unsigned long s,
const unsigned char *data, int len)
{
unsigned s1 = s & 0xFFFF, s2 = (s >> 16) & 0xFFFF;
int i;
for (i = 0; i < len; i++) {
s1 += data[i];
s2 += s1;
if (!(i & 0xFFF)) {
s1 %= 65521;
s2 %= 65521;
}
}
return ((s2 % 65521) << 16) | (s1 % 65521);
}
/*
* CRC32 checksum function.
*/
static unsigned long crc32_update(unsigned long crcword,
const unsigned char *data, int len)
{
static const unsigned long crc32_table[256] = {
0x00000000L, 0x77073096L, 0xEE0E612CL, 0x990951BAL,
0x076DC419L, 0x706AF48FL, 0xE963A535L, 0x9E6495A3L,
0x0EDB8832L, 0x79DCB8A4L, 0xE0D5E91EL, 0x97D2D988L,
0x09B64C2BL, 0x7EB17CBDL, 0xE7B82D07L, 0x90BF1D91L,
0x1DB71064L, 0x6AB020F2L, 0xF3B97148L, 0x84BE41DEL,
0x1ADAD47DL, 0x6DDDE4EBL, 0xF4D4B551L, 0x83D385C7L,
0x136C9856L, 0x646BA8C0L, 0xFD62F97AL, 0x8A65C9ECL,
0x14015C4FL, 0x63066CD9L, 0xFA0F3D63L, 0x8D080DF5L,
0x3B6E20C8L, 0x4C69105EL, 0xD56041E4L, 0xA2677172L,
0x3C03E4D1L, 0x4B04D447L, 0xD20D85FDL, 0xA50AB56BL,
0x35B5A8FAL, 0x42B2986CL, 0xDBBBC9D6L, 0xACBCF940L,
0x32D86CE3L, 0x45DF5C75L, 0xDCD60DCFL, 0xABD13D59L,
0x26D930ACL, 0x51DE003AL, 0xC8D75180L, 0xBFD06116L,
0x21B4F4B5L, 0x56B3C423L, 0xCFBA9599L, 0xB8BDA50FL,
0x2802B89EL, 0x5F058808L, 0xC60CD9B2L, 0xB10BE924L,
0x2F6F7C87L, 0x58684C11L, 0xC1611DABL, 0xB6662D3DL,
0x76DC4190L, 0x01DB7106L, 0x98D220BCL, 0xEFD5102AL,
0x71B18589L, 0x06B6B51FL, 0x9FBFE4A5L, 0xE8B8D433L,
0x7807C9A2L, 0x0F00F934L, 0x9609A88EL, 0xE10E9818L,
0x7F6A0DBBL, 0x086D3D2DL, 0x91646C97L, 0xE6635C01L,
0x6B6B51F4L, 0x1C6C6162L, 0x856530D8L, 0xF262004EL,
0x6C0695EDL, 0x1B01A57BL, 0x8208F4C1L, 0xF50FC457L,
0x65B0D9C6L, 0x12B7E950L, 0x8BBEB8EAL, 0xFCB9887CL,
0x62DD1DDFL, 0x15DA2D49L, 0x8CD37CF3L, 0xFBD44C65L,
0x4DB26158L, 0x3AB551CEL, 0xA3BC0074L, 0xD4BB30E2L,
0x4ADFA541L, 0x3DD895D7L, 0xA4D1C46DL, 0xD3D6F4FBL,
0x4369E96AL, 0x346ED9FCL, 0xAD678846L, 0xDA60B8D0L,
0x44042D73L, 0x33031DE5L, 0xAA0A4C5FL, 0xDD0D7CC9L,
0x5005713CL, 0x270241AAL, 0xBE0B1010L, 0xC90C2086L,
0x5768B525L, 0x206F85B3L, 0xB966D409L, 0xCE61E49FL,
0x5EDEF90EL, 0x29D9C998L, 0xB0D09822L, 0xC7D7A8B4L,
0x59B33D17L, 0x2EB40D81L, 0xB7BD5C3BL, 0xC0BA6CADL,
0xEDB88320L, 0x9ABFB3B6L, 0x03B6E20CL, 0x74B1D29AL,
0xEAD54739L, 0x9DD277AFL, 0x04DB2615L, 0x73DC1683L,
0xE3630B12L, 0x94643B84L, 0x0D6D6A3EL, 0x7A6A5AA8L,
0xE40ECF0BL, 0x9309FF9DL, 0x0A00AE27L, 0x7D079EB1L,
0xF00F9344L, 0x8708A3D2L, 0x1E01F268L, 0x6906C2FEL,
0xF762575DL, 0x806567CBL, 0x196C3671L, 0x6E6B06E7L,
0xFED41B76L, 0x89D32BE0L, 0x10DA7A5AL, 0x67DD4ACCL,
0xF9B9DF6FL, 0x8EBEEFF9L, 0x17B7BE43L, 0x60B08ED5L,
0xD6D6A3E8L, 0xA1D1937EL, 0x38D8C2C4L, 0x4FDFF252L,
0xD1BB67F1L, 0xA6BC5767L, 0x3FB506DDL, 0x48B2364BL,
0xD80D2BDAL, 0xAF0A1B4CL, 0x36034AF6L, 0x41047A60L,
0xDF60EFC3L, 0xA867DF55L, 0x316E8EEFL, 0x4669BE79L,
0xCB61B38CL, 0xBC66831AL, 0x256FD2A0L, 0x5268E236L,
0xCC0C7795L, 0xBB0B4703L, 0x220216B9L, 0x5505262FL,
0xC5BA3BBEL, 0xB2BD0B28L, 0x2BB45A92L, 0x5CB36A04L,
0xC2D7FFA7L, 0xB5D0CF31L, 0x2CD99E8BL, 0x5BDEAE1DL,
0x9B64C2B0L, 0xEC63F226L, 0x756AA39CL, 0x026D930AL,
0x9C0906A9L, 0xEB0E363FL, 0x72076785L, 0x05005713L,
0x95BF4A82L, 0xE2B87A14L, 0x7BB12BAEL, 0x0CB61B38L,
0x92D28E9BL, 0xE5D5BE0DL, 0x7CDCEFB7L, 0x0BDBDF21L,
0x86D3D2D4L, 0xF1D4E242L, 0x68DDB3F8L, 0x1FDA836EL,
0x81BE16CDL, 0xF6B9265BL, 0x6FB077E1L, 0x18B74777L,
0x88085AE6L, 0xFF0F6A70L, 0x66063BCAL, 0x11010B5CL,
0x8F659EFFL, 0xF862AE69L, 0x616BFFD3L, 0x166CCF45L,
0xA00AE278L, 0xD70DD2EEL, 0x4E048354L, 0x3903B3C2L,
0xA7672661L, 0xD06016F7L, 0x4969474DL, 0x3E6E77DBL,
0xAED16A4AL, 0xD9D65ADCL, 0x40DF0B66L, 0x37D83BF0L,
0xA9BCAE53L, 0xDEBB9EC5L, 0x47B2CF7FL, 0x30B5FFE9L,
0xBDBDF21CL, 0xCABAC28AL, 0x53B39330L, 0x24B4A3A6L,
0xBAD03605L, 0xCDD70693L, 0x54DE5729L, 0x23D967BFL,
0xB3667A2EL, 0xC4614AB8L, 0x5D681B02L, 0x2A6F2B94L,
0xB40BBE37L, 0xC30C8EA1L, 0x5A05DF1BL, 0x2D02EF8DL
};
crcword ^= 0xFFFFFFFFL;
while (len--) {
unsigned long newbyte = *data++;
newbyte ^= crcword & 0xFFL;
crcword = (crcword >> 8) ^ crc32_table[newbyte];
}
return crcword ^ 0xFFFFFFFFL;
}
typedef struct {
short code, extrabits;
int min, max;
} coderecord;
static const coderecord lencodes[] = {
{257, 0, 3, 3},
{258, 0, 4, 4},
{259, 0, 5, 5},
{260, 0, 6, 6},
{261, 0, 7, 7},
{262, 0, 8, 8},
{263, 0, 9, 9},
{264, 0, 10, 10},
{265, 1, 11, 12},
{266, 1, 13, 14},
{267, 1, 15, 16},
{268, 1, 17, 18},
{269, 2, 19, 22},
{270, 2, 23, 26},
{271, 2, 27, 30},
{272, 2, 31, 34},
{273, 3, 35, 42},
{274, 3, 43, 50},
{275, 3, 51, 58},
{276, 3, 59, 66},
{277, 4, 67, 82},
{278, 4, 83, 98},
{279, 4, 99, 114},
{280, 4, 115, 130},
{281, 5, 131, 162},
{282, 5, 163, 194},
{283, 5, 195, 226},
{284, 5, 227, 257},
{285, 0, 258, 258},
};
static const coderecord distcodes[] = {
{0, 0, 1, 1},
{1, 0, 2, 2},
{2, 0, 3, 3},
{3, 0, 4, 4},
{4, 1, 5, 6},
{5, 1, 7, 8},
{6, 2, 9, 12},
{7, 2, 13, 16},
{8, 3, 17, 24},
{9, 3, 25, 32},
{10, 4, 33, 48},
{11, 4, 49, 64},
{12, 5, 65, 96},
{13, 5, 97, 128},
{14, 6, 129, 192},
{15, 6, 193, 256},
{16, 7, 257, 384},
{17, 7, 385, 512},
{18, 8, 513, 768},
{19, 8, 769, 1024},
{20, 9, 1025, 1536},
{21, 9, 1537, 2048},
{22, 10, 2049, 3072},
{23, 10, 3073, 4096},
{24, 11, 4097, 6144},
{25, 11, 6145, 8192},
{26, 12, 8193, 12288},
{27, 12, 12289, 16384},
{28, 13, 16385, 24576},
{29, 13, 24577, 32768},
};
/* ----------------------------------------------------------------------
* Deflate compression.
*/
#define SYMLIMIT 65536
#define SYMPFX_LITLEN 0x00000000U
#define SYMPFX_DIST 0x40000000U
#define SYMPFX_EXTRABITS 0x80000000U
#define SYMPFX_CODELEN 0xC0000000U
#define SYMPFX_MASK 0xC0000000U
#define SYM_EXTRABITS_MASK 0x3C000000U
#define SYM_EXTRABITS_SHIFT 26
struct huftrees {
unsigned char *len_litlen;
int *code_litlen;
unsigned char *len_dist;
int *code_dist;
unsigned char *len_codelen;
int *code_codelen;
};
struct deflate_compress_ctx {
struct LZ77Context *lzc;
unsigned char *outbuf;
int outlen, outsize;
unsigned long outbits;
int noutbits;
int firstblock;
unsigned long *syms;
int symstart, nsyms;
int type;
unsigned long checksum;
unsigned long datasize;
int lastblock;
int finished;
unsigned char static_len1[286], static_len2[30];
int static_code1[286], static_code2[30];
struct huftrees sht;
#ifdef STATISTICS
unsigned long bitcount;
#endif
};
static void outbits(deflate_compress_ctx *out,
unsigned long bits, int nbits)
{
assert(out->noutbits + nbits <= 32);
out->outbits |= bits << out->noutbits;
out->noutbits += nbits;
while (out->noutbits >= 8) {
if (out->outlen >= out->outsize) {
out->outsize = out->outlen + 64;
out->outbuf = sresize(out->outbuf, out->outsize, unsigned char);
}
out->outbuf[out->outlen++] = (unsigned char) (out->outbits & 0xFF);
out->outbits >>= 8;
out->noutbits -= 8;
}
#ifdef STATISTICS
out->bitcount += nbits;
#endif
}
/*
* Binary heap functions used by buildhuf(). Each one assumes the
* heap to be stored in an array of ints, with two ints per node
* (user data and key). They take in the old heap length, and
* return the new one.
*/
#define HEAPPARENT(x) (((x)-2)/4*2)
#define HEAPLEFT(x) ((x)*2+2)
#define HEAPRIGHT(x) ((x)*2+4)
static int addheap(int *heap, int len, int userdata, int key)
{
int me, dad, tmp;
me = len;
heap[len++] = userdata;
heap[len++] = key;
while (me > 0) {
dad = HEAPPARENT(me);
if (heap[me+1] < heap[dad+1]) {
tmp = heap[me]; heap[me] = heap[dad]; heap[dad] = tmp;
tmp = heap[me+1]; heap[me+1] = heap[dad+1]; heap[dad+1] = tmp;
me = dad;
} else
break;
}
return len;
}
static int rmheap(int *heap, int len, int *userdata, int *key)
{
int me, lc, rc, c, tmp;
len -= 2;
*userdata = heap[0];
*key = heap[1];
heap[0] = heap[len];
heap[1] = heap[len+1];
me = 0;
while (1) {
lc = HEAPLEFT(me);
rc = HEAPRIGHT(me);
if (lc >= len)
break;
else if (rc >= len || heap[lc+1] < heap[rc+1])
c = lc;
else
c = rc;
if (heap[me+1] > heap[c+1]) {
tmp = heap[me]; heap[me] = heap[c]; heap[c] = tmp;
tmp = heap[me+1]; heap[me+1] = heap[c+1]; heap[c+1] = tmp;
} else
break;
me = c;
}
return len;
}
/*
* The core of the Huffman algorithm: takes an input array of
* symbol frequencies, and produces an output array of code
* lengths.
*
* This is basically a generic Huffman implementation, but it has
* one zlib-related quirk which is that it caps the output code
* lengths to fit in an unsigned char (which is safe since Deflate
* will reject anything longer than 15 anyway). Anyone wanting to
* rip it out and use it in another context should find that easy
* to remove.
*/
#define HUFMAX 286
static void buildhuf(const int *freqs, unsigned char *lengths, int nsyms)
{
int parent[2*HUFMAX-1];
int length[2*HUFMAX-1];
int heap[2*HUFMAX];
int heapsize;
int i, j, n;
int si, sj;
assert(nsyms <= HUFMAX);
memset(parent, 0, sizeof(parent));
/*
* Begin by building the heap.
*/
heapsize = 0;
for (i = 0; i < nsyms; i++)
if (freqs[i] > 0) /* leave unused symbols out totally */
heapsize = addheap(heap, heapsize, i, freqs[i]);
/*
* Now repeatedly take two elements off the heap and merge
* them.
*/
n = HUFMAX;
while (heapsize > 2) {
heapsize = rmheap(heap, heapsize, &i, &si);
heapsize = rmheap(heap, heapsize, &j, &sj);
parent[i] = n;
parent[j] = n;
heapsize = addheap(heap, heapsize, n, si + sj);
n++;
}
/*
* Now we have our tree, in the form of a link from each node
* to the index of its parent. Count back down the tree to
* determine the code lengths.
*/
memset(length, 0, sizeof(length));
/* The tree root has length 0 after that, which is correct. */
for (i = n-1; i-- ;)
if (parent[i] > 0)
length[i] = 1 + length[parent[i]];
/*
* And that's it. (Simple, wasn't it?) Copy the lengths into
* the output array and leave.
*
* Here we cap lengths to fit in unsigned char.
*/
for (i = 0; i < nsyms; i++)
lengths[i] = (length[i] > 255 ? 255 : length[i]);
}
/*
* Wrapper around buildhuf() which enforces the Deflate restriction
* that no code length may exceed 15 bits, or 7 for the auxiliary
* code length alphabet. This function has the same calling
* semantics as buildhuf(), except that it might modify the freqs
* array.
*/
static void deflate_buildhuf(int *freqs, unsigned char *lengths,
int nsyms, int limit)
{
int smallestfreq, totalfreq, nactivesyms;
int num, denom, adjust;
int i;
int maxprob;
/*
* Nasty special case: if the frequency table has fewer than
* two non-zero elements, we must invent some, because we can't
* have fewer than one bit encoding a symbol.
*/
assert(nsyms >= 2);
{
int count = 0;
for (i = 0; i < nsyms; i++)
if (freqs[i] > 0)
count++;
if (count < 2) {
for (i = 0; i < nsyms && count > 0; i++)
if (freqs[i] == 0) {
freqs[i] = 1;
count--;
}
}
}
/*
* First, try building the Huffman table the normal way. If
* this works, it's optimal, so we don't want to mess with it.
*/
buildhuf(freqs, lengths, nsyms);
for (i = 0; i < nsyms; i++)
if (lengths[i] > limit)
break;
if (i == nsyms)
return; /* OK */
/*
* The Huffman algorithm can only ever generate a code length
* of N bits or more if there is a symbol whose probability is
* less than the reciprocal of the (N+2)th Fibonacci number
* (counting from F_0=0 and F_1=1), i.e. 1/2584 for N=16, or
* 1/55 for N=8. (This is a necessary though not sufficient
* condition.)
*
* Why is this? Well, consider the input symbol with the
* smallest probability. Let that probability be x. In order
* for this symbol to have a code length of at least 1, the
* Huffman algorithm will have to merge it with some other
* node; and since x is the smallest probability, the node it
* gets merged with must be at least x. Thus, the probability
* of the resulting combined node will be at least 2x. Now in
* order for our node to reach depth 2, this 2x-node must be
* merged again. But what with? We can't assume the node it
* merges with is at least 2x, because this one might only be
* the _second_ smallest remaining node. But we do know the
* node it merges with must be at least x, so our order-2
* internal node is at least 3x.
*
* How small a node can merge with _that_ to get an order-3
* internal node? Well, it must be at least 2x, because if it
* was smaller than that then it would have been one of the two
* smallest nodes in the previous step and been merged at that
* point. So at least 3x, plus at least 2x, comes to at least
* 5x for an order-3 node.
*
* And so it goes on: at every stage we must merge our current
* node with a node at least as big as the bigger of this one's
* two parents, and from this starting point that gives rise to
* the Fibonacci sequence. So we find that in order to have a
* node n levels deep (i.e. a maximum code length of n), the
* overall probability of the root of the entire tree must be
* at least F_{n+2} times the probability of the rarest symbol.
* In other words, since the overall probability is 1, it is a
* necessary condition for a code length of 16 or more that
* there must be at least one symbol with probability <=
* 1/F_18.
*
* (To demonstrate that a probability this big really can give
* rise to a code length of 16, consider the set of input
* frequencies { 1-epsilon, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,
* 89, 144, 233, 377, 610, 987 }, for arbitrarily small
* epsilon.)
*
* So here buildhuf() has returned us an overlong code. So to
* ensure it doesn't do it again, we add a constant to all the
* (non-zero) symbol frequencies, causing them to become more
* balanced and removing the danger. We can then feed the
* results back to the standard buildhuf() and be
* assert()-level confident that the resulting code lengths
* contain nothing outside the permitted range.
*/
assert(limit == 15 || limit == 7);
maxprob = (limit == 15 ? 2584 : 55); /* no point in computing full F_n */
totalfreq = nactivesyms = 0;
smallestfreq = -1;
for (i = 0; i < nsyms; i++) {
if (freqs[i] == 0)
continue;
if (smallestfreq < 0 || smallestfreq > freqs[i])
smallestfreq = freqs[i];
totalfreq += freqs[i];
nactivesyms++;
}
assert(smallestfreq <= totalfreq / maxprob);
/*
* We want to find the smallest integer `adjust' such that
* (totalfreq + nactivesyms * adjust) / (smallestfreq +
* adjust) is less than maxprob. A bit of algebra tells us
* that the threshold value is equal to
*
* totalfreq - maxprob * smallestfreq
* ----------------------------------
* maxprob - nactivesyms
*
* rounded up, of course. And we'll only even be trying
* this if
*/
num = totalfreq - smallestfreq * maxprob;
denom = maxprob - nactivesyms;
adjust = (num + denom - 1) / denom;
/*
* Now add `adjust' to all the input symbol frequencies.
*/
for (i = 0; i < nsyms; i++)
if (freqs[i] != 0)
freqs[i] += adjust;
/*
* Rebuild the Huffman tree...
*/
buildhuf(freqs, lengths, nsyms);
/*
* ... and this time it ought to be OK.
*/
for (i = 0; i < nsyms; i++)
assert(lengths[i] <= limit);
}
/*
* Compute the bit length of a symbol, given the three Huffman
* trees.
*/
static int symsize(unsigned sym, const struct huftrees *trees)
{
unsigned basesym = sym &~ SYMPFX_MASK;
switch (sym & SYMPFX_MASK) {
case SYMPFX_LITLEN:
return trees->len_litlen[basesym];
case SYMPFX_DIST:
return trees->len_dist[basesym];
case SYMPFX_CODELEN:
return trees->len_codelen[basesym];
default /*case SYMPFX_EXTRABITS*/:
return basesym >> SYM_EXTRABITS_SHIFT;
}
}
/*
* Write out a single symbol, given the three Huffman trees.
*/
static void writesym(deflate_compress_ctx *out,
unsigned sym, const struct huftrees *trees)
{
unsigned basesym = sym &~ SYMPFX_MASK;
int i;
switch (sym & SYMPFX_MASK) {
case SYMPFX_LITLEN:
debug(("send: litlen %d\n", basesym));
outbits(out, trees->code_litlen[basesym], trees->len_litlen[basesym]);
break;
case SYMPFX_DIST:
debug(("send: dist %d\n", basesym));
outbits(out, trees->code_dist[basesym], trees->len_dist[basesym]);
break;
case SYMPFX_CODELEN:
debug(("send: codelen %d\n", basesym));
outbits(out, trees->code_codelen[basesym],trees->len_codelen[basesym]);
break;
case SYMPFX_EXTRABITS:
i = basesym >> SYM_EXTRABITS_SHIFT;
basesym &= ~SYM_EXTRABITS_MASK;
debug(("send: extrabits %d/%d\n", basesym, i));
outbits(out, basesym, i);
break;
}
}
/*
* outblock() must output _either_ a dynamic block of length
* `dynamic_len', _or_ a static block of length `static_len', but
* it gets to choose which.
*/
static void outblock(deflate_compress_ctx *out,
int dynamic_len, int static_len)
{
int freqs1[286], freqs2[30], freqs3[19];
unsigned char len1[286], len2[30], len3[19];
int code1[286], code2[30], code3[19];
int hlit, hdist, hclen, bfinal, btype;
int treesrc[286 + 30];
int treesyms[286 + 30];
int codelen[19];
int i, ntreesrc, ntreesyms;
int dynamic, blklen;
struct huftrees dht;
const struct huftrees *ht;
#ifdef STATISTICS
unsigned long bitcount_before;
#endif
dht.len_litlen = len1;
dht.len_dist = len2;
dht.len_codelen = len3;
dht.code_litlen = code1;
dht.code_dist = code2;
dht.code_codelen = code3;
/*
* We make our choice of block to output by doing all the
* detailed work to determine the exact length of each possible
* block. Then we choose the one which has fewest output bits
* per symbol.
*/
/*
* First build the two main Huffman trees for the dynamic
* block.
*/
/*
* Count up the frequency tables.
*/
memset(freqs1, 0, sizeof(freqs1));
memset(freqs2, 0, sizeof(freqs2));
freqs1[256] = 1; /* we're bound to need one EOB */
for (i = 0; i < dynamic_len; i++) {
unsigned sym = out->syms[(out->symstart + i) % SYMLIMIT];
/*
* Increment the occurrence counter for this symbol, if
* it's in one of the Huffman alphabets and isn't extra
* bits.
*/
if ((sym & SYMPFX_MASK) == SYMPFX_LITLEN) {
sym &= ~SYMPFX_MASK;
assert(sym < lenof(freqs1));
freqs1[sym]++;
} else if ((sym & SYMPFX_MASK) == SYMPFX_DIST) {
sym &= ~SYMPFX_MASK;
assert(sym < lenof(freqs2));
freqs2[sym]++;
}
}
deflate_buildhuf(freqs1, len1, lenof(freqs1), 15);
deflate_buildhuf(freqs2, len2, lenof(freqs2), 15);
hufcodes(len1, code1, lenof(freqs1));
hufcodes(len2, code2, lenof(freqs2));
/*
* Determine HLIT and HDIST.
*/
for (hlit = 286; hlit > 257 && len1[hlit-1] == 0; hlit--);
for (hdist = 30; hdist > 1 && len2[hdist-1] == 0; hdist--);
/*
* Write out the list of symbols used to transmit the
* trees.
*/
ntreesrc = 0;
for (i = 0; i < hlit; i++)
treesrc[ntreesrc++] = len1[i];
for (i = 0; i < hdist; i++)
treesrc[ntreesrc++] = len2[i];
ntreesyms = 0;
for (i = 0; i < ntreesrc ;) {
int j = 1;
int k;
/* Find length of run of the same length code. */
while (i+j < ntreesrc && treesrc[i+j] == treesrc[i])
j++;
/* Encode that run as economically as we can. */
k = j;
if (treesrc[i] == 0) {
/*
* Zero code length: we can output run codes for
* 3-138 zeroes. So if we have fewer than 3 zeroes,
* we just output literals. Otherwise, we output
* nothing but run codes, and tweak their lengths
* to make sure we aren't left with under 3 at the
* end.
*/
if (k < 3) {
while (k--)
treesyms[ntreesyms++] = 0 | SYMPFX_CODELEN;
} else {
while (k > 0) {
int rpt = (k < 138 ? k : 138);
if (rpt > k-3 && rpt < k)
rpt = k-3;
assert(rpt >= 3 && rpt <= 138);
if (rpt < 11) {
treesyms[ntreesyms++] = 17 | SYMPFX_CODELEN;
treesyms[ntreesyms++] =
(SYMPFX_EXTRABITS | (rpt - 3) |
(3 << SYM_EXTRABITS_SHIFT));
} else {
treesyms[ntreesyms++] = 18 | SYMPFX_CODELEN;
treesyms[ntreesyms++] =
(SYMPFX_EXTRABITS | (rpt - 11) |
(7 << SYM_EXTRABITS_SHIFT));
}
k -= rpt;
}
}
} else {
/*
* Non-zero code length: we must output the first
* one explicitly, then we can output a copy code
* for 3-6 repeats. So if we have fewer than 4
* repeats, we _just_ output literals. Otherwise,
* we output one literal plus at least one copy
* code, and tweak the copy codes to make sure we
* aren't left with under 3 at the end.
*/
assert(treesrc[i] < 16);
treesyms[ntreesyms++] = treesrc[i] | SYMPFX_CODELEN;
k--;
if (k < 3) {
while (k--)
treesyms[ntreesyms++] = treesrc[i] | SYMPFX_CODELEN;
} else {
while (k > 0) {
int rpt = (k < 6 ? k : 6);
if (rpt > k-3 && rpt < k)
rpt = k-3;
assert(rpt >= 3 && rpt <= 6);
treesyms[ntreesyms++] = 16 | SYMPFX_CODELEN;
treesyms[ntreesyms++] = (SYMPFX_EXTRABITS | (rpt - 3) |
(2 << SYM_EXTRABITS_SHIFT));
k -= rpt;
}
}
}
i += j;
}
assert((unsigned)ntreesyms < lenof(treesyms));
/*
* Count up the frequency table for the tree-transmission
* symbols, and build the auxiliary Huffman tree for that.
*/
memset(freqs3, 0, sizeof(freqs3));
for (i = 0; i < ntreesyms; i++) {
unsigned sym = treesyms[i];
/*
* Increment the occurrence counter for this symbol, if
* it's the Huffman alphabet and isn't extra bits.
*/
if ((sym & SYMPFX_MASK) == SYMPFX_CODELEN) {
sym &= ~SYMPFX_MASK;
assert(sym < lenof(freqs3));
freqs3[sym]++;
}
}
deflate_buildhuf(freqs3, len3, lenof(freqs3), 7);
hufcodes(len3, code3, lenof(freqs3));
/*
* Reorder the code length codes into transmission order, and
* determine HCLEN.
*/
for (i = 0; i < 19; i++)
codelen[i] = len3[lenlenmap[i]];
for (hclen = 19; hclen > 4 && codelen[hclen-1] == 0; hclen--);
/*
* Now work out the exact size of both the dynamic and the
* static block, in bits.
*/
{
int ssize, dsize;
/*
* First the dynamic block.
*/
dsize = 3 + 5 + 5 + 4; /* 3-bit header, HLIT, HDIST, HCLEN */
dsize += 3 * hclen; /* code-length-alphabet code lengths */
/* Code lengths */
for (i = 0; i < ntreesyms; i++)
dsize += symsize(treesyms[i], &dht);
/* The actual block data */
for (i = 0; i < dynamic_len; i++) {
unsigned sym = out->syms[(out->symstart + i) % SYMLIMIT];
dsize += symsize(sym, &dht);
}
/* And the end-of-data symbol. */
dsize += symsize(SYMPFX_LITLEN | 256, &dht);
/*
* Now the static block.
*/
ssize = 3; /* 3-bit block header */
/* The actual block data */
for (i = 0; i < static_len; i++) {
unsigned sym = out->syms[(out->symstart + i) % SYMLIMIT];
ssize += symsize(sym, &out->sht);
}
/* And the end-of-data symbol. */
ssize += symsize(SYMPFX_LITLEN | 256, &out->sht);
/*
* Compare the two and decide which to output. We break
* exact ties in favour of the static block, because of the
* special case in which that block has zero length.
*/
dynamic = ((double)ssize * dynamic_len > (double)dsize * static_len);
ht = dynamic ? &dht : &out->sht;
blklen = dynamic ? dynamic_len : static_len;
}
/*
* Actually transmit the block.
*/
/* 3-bit block header */
bfinal = (out->lastblock ? 1 : 0);
btype = dynamic ? 2 : 1;
debug(("send: bfinal=%d btype=%d\n", bfinal, btype));
outbits(out, bfinal, 1);
outbits(out, btype, 2);
#ifdef STATISTICS
bitcount_before = out->bitcount;
#endif
if (dynamic) {
/* HLIT, HDIST and HCLEN */
debug(("send: hlit=%d hdist=%d hclen=%d\n", hlit, hdist, hclen));
outbits(out, hlit - 257, 5);
outbits(out, hdist - 1, 5);
outbits(out, hclen - 4, 4);
/* Code lengths for the auxiliary tree */
for (i = 0; i < hclen; i++) {
debug(("send: lenlen %d\n", codelen[i]));
outbits(out, codelen[i], 3);
}
/* Code lengths for the literal/length and distance trees */
for (i = 0; i < ntreesyms; i++)
writesym(out, treesyms[i], ht);
#ifdef STATISTICS
fprintf(stderr, "total tree size %lu bits\n",
out->bitcount - bitcount_before);
#endif
}
/* Output the actual symbols from the buffer */
for (i = 0; i < blklen; i++) {
unsigned sym = out->syms[(out->symstart + i) % SYMLIMIT];
writesym(out, sym, ht);
}
/* Output the end-of-data symbol */
writesym(out, SYMPFX_LITLEN | 256, ht);
/*
* Remove all the just-output symbols from the symbol buffer by
* adjusting symstart and nsyms.
*/
out->symstart = (out->symstart + blklen) % SYMLIMIT;
out->nsyms -= blklen;
}
/*
* Give the approximate log-base-2 of an input integer, measured in
* 8ths of a bit. (I.e. this computes an integer approximation to
* 8*logbase2(x).)
*/
static int approxlog2(unsigned x)
{
int ret = 31*8;
/*
* Binary-search to get the top bit of x up to bit 31.
*/
if (x < 0x00010000U) x <<= 16, ret -= 16*8;
if (x < 0x01000000U) x <<= 8, ret -= 8*8;
if (x < 0x10000000U) x <<= 4, ret -= 4*8;
if (x < 0x40000000U) x <<= 2, ret -= 2*8;
if (x < 0x80000000U) x <<= 1, ret -= 1*8;
/*
* Now we know the logarithm we want is in [ret,ret+1).
* Determine the bottom three bits by checking against
* threshold values.
*
* (Each of these threshold values is 0x80000000 times an odd
* power of 2^(1/16). Therefore, this function rounds to
* nearest.)
*/
if (x <= 0xAD583EEAU) {
if (x <= 0x91C3D373U)
ret += (x <= 0x85AAC367U ? 0 : 1);
else
ret += (x <= 0x9EF53260U ? 2 : 3);
} else {
if (x <= 0xCE248C15U)
ret += (x <= 0xBD08A39FU ? 4 : 5);
else
ret += (x <= 0xE0CCDEECU ? 6 : x <= 0xF5257D15L ? 7 : 8);
}
return ret;
}
static void chooseblock(deflate_compress_ctx *out)
{
int freqs1[286], freqs2[30];
int i, len, bestlen, longestlen = 0;
int total1, total2;
int bestvfm;
memset(freqs1, 0, sizeof(freqs1));
memset(freqs2, 0, sizeof(freqs2));
freqs1[256] = 1; /* we're bound to need one EOB */
total1 = 1;
total2 = 0;
/*
* Iterate over all possible block lengths, computing the
* entropic coding approximation to the final length at every
* stage. We divide the result by the number of symbols
* encoded, to determine the `value for money' (overall
* bits-per-symbol count) of a block of that length.
*/
bestlen = -1;
bestvfm = 0;
len = 300 * 8; /* very approximate size of the Huffman trees */
for (i = 0; i < out->nsyms; i++) {
unsigned sym = out->syms[(out->symstart + i) % SYMLIMIT];
if (i > 0 && (sym & SYMPFX_MASK) == SYMPFX_LITLEN) {
/*
* This is a viable point at which to end the block.
* Compute the value for money.
*/
int vfm = i * 32768 / len; /* symbols encoded per bit */
if (bestlen < 0 || vfm > bestvfm) {
bestlen = i;
bestvfm = vfm;
}
longestlen = i;
}
/*
* Increment the occurrence counter for this symbol, if
* it's in one of the Huffman alphabets and isn't extra
* bits.
*/
if ((sym & SYMPFX_MASK) == SYMPFX_LITLEN) {
sym &= ~SYMPFX_MASK;
assert(sym < lenof(freqs1));
len += freqs1[sym] * approxlog2(freqs1[sym]);
len -= total1 * approxlog2(total1);
freqs1[sym]++;
total1++;
len -= freqs1[sym] * approxlog2(freqs1[sym]);
len += total1 * approxlog2(total1);
} else if ((sym & SYMPFX_MASK) == SYMPFX_DIST) {
sym &= ~SYMPFX_MASK;
assert(sym < lenof(freqs2));
len += freqs2[sym] * approxlog2(freqs2[sym]);
len -= total2 * approxlog2(total2);
freqs2[sym]++;
total2++;
len -= freqs2[sym] * approxlog2(freqs2[sym]);
len += total2 * approxlog2(total2);
} else if ((sym & SYMPFX_MASK) == SYMPFX_EXTRABITS) {
len += 8 * ((sym &~ SYMPFX_MASK) >> SYM_EXTRABITS_SHIFT);
}
}
assert(bestlen > 0);
outblock(out, bestlen, longestlen);
}
/*
* Force the current symbol buffer to be flushed out as a single
* block.
*/
static void flushblock(deflate_compress_ctx *out)
{
/*
* No need to check that out->nsyms is a valid block length: we
* know it has to be, because flushblock() is called in between
* two matches/literals.
*/
outblock(out, out->nsyms, out->nsyms);
assert(out->nsyms == 0);
}
/*
* Place a symbol into the symbols buffer.
*/
static void outsym(deflate_compress_ctx *out, unsigned long sym)
{
assert(out->nsyms < SYMLIMIT);
out->syms[(out->symstart + out->nsyms++) % SYMLIMIT] = sym;
if (out->nsyms == SYMLIMIT)
chooseblock(out);
}
static void literal(struct LZ77Context *ectx, unsigned char c)
{
deflate_compress_ctx *out = (deflate_compress_ctx *) ectx->userdata;
outsym(out, SYMPFX_LITLEN | c);
}
static void match(struct LZ77Context *ectx, int distance, int len)
{
const coderecord *d, *l;
int i, j, k;
deflate_compress_ctx *out = (deflate_compress_ctx *) ectx->userdata;
while (len > 0) {
int thislen;
/*
* We can transmit matches of lengths 3 through 258
* inclusive. So if len exceeds 258, we must transmit in
* several steps, with 258 or less in each step.
*
* Specifically: if len >= 261, we can transmit 258 and be
* sure of having at least 3 left for the next step. And if
* len <= 258, we can just transmit len. But if len == 259
* or 260, we must transmit len-3.
*/
thislen = (len > 260 ? 258 : len <= 258 ? len : len - 3);
len -= thislen;
/*
* Binary-search to find which length code we're
* transmitting.
*/
i = -1;
j = sizeof(lencodes) / sizeof(*lencodes);
while (1) {
assert(j - i >= 2);
k = (j + i) / 2;
if (thislen < lencodes[k].min)
j = k;
else if (thislen > lencodes[k].max)
i = k;
else {
l = &lencodes[k];
break; /* found it! */
}
}
/*
* Transmit the length code.
*/
outsym(out, SYMPFX_LITLEN | l->code);
/*
* Transmit the extra bits.
*/
if (l->extrabits) {
outsym(out, (SYMPFX_EXTRABITS | (thislen - l->min) |
(l->extrabits << SYM_EXTRABITS_SHIFT)));
}
/*
* Binary-search to find which distance code we're
* transmitting.
*/
i = -1;
j = sizeof(distcodes) / sizeof(*distcodes);
while (1) {
assert(j - i >= 2);
k = (j + i) / 2;
if (distance < distcodes[k].min)
j = k;
else if (distance > distcodes[k].max)
i = k;
else {
d = &distcodes[k];
break; /* found it! */
}
}
/*
* Write the distance code.
*/
outsym(out, SYMPFX_DIST | d->code);
/*
* Transmit the extra bits.
*/
if (d->extrabits) {
outsym(out, (SYMPFX_EXTRABITS | (distance - d->min) |
(d->extrabits << SYM_EXTRABITS_SHIFT)));
}
}
}
deflate_compress_ctx *deflate_compress_new(int type)
{
deflate_compress_ctx *out;
struct LZ77Context *ectx = snew(struct LZ77Context);
lz77_init(ectx);
ectx->literal = literal;
ectx->match = match;
out = snew(deflate_compress_ctx);
out->type = type;
out->outbits = out->noutbits = 0;
out->firstblock = TRUE;
#ifdef STATISTICS
out->bitcount = 0;
#endif
out->syms = snewn(SYMLIMIT, unsigned long);
out->symstart = out->nsyms = 0;
out->checksum = (type == DEFLATE_TYPE_ZLIB ? 1 : 0);
out->datasize = 0;
out->lastblock = FALSE;
out->finished = FALSE;
/*
* Build the static Huffman tables now, so we'll have them
* available every time outblock() is called.
*/
{
int i;
for (i = 0; i < lenof(out->static_len1); i++)
out->static_len1[i] = (i < 144 ? 8 :
i < 256 ? 9 :
i < 280 ? 7 : 8);
for (i = 0; i < lenof(out->static_len2); i++)
out->static_len2[i] = 5;
}
hufcodes(out->static_len1, out->static_code1, lenof(out->static_code1));
hufcodes(out->static_len2, out->static_code2, lenof(out->static_code2));
out->sht.len_litlen = out->static_len1;
out->sht.len_dist = out->static_len2;
out->sht.len_codelen = NULL;
out->sht.code_litlen = out->static_code1;
out->sht.code_dist = out->static_code2;
out->sht.code_codelen = NULL;
ectx->userdata = out;
out->lzc = ectx;
return out;
}
void deflate_compress_free(deflate_compress_ctx *out)
{
struct LZ77Context *ectx = out->lzc;
sfree(out->syms);
sfree(ectx->ictx);
sfree(ectx);
sfree(out);
}
void deflate_compress_data(deflate_compress_ctx *out,
const void *vblock, int len, int flushtype,
void **outblock, int *outlen)
{
struct LZ77Context *ectx = out->lzc;
const unsigned char *block = (const unsigned char *)vblock;
assert(!out->finished);
out->outbuf = NULL;
out->outlen = out->outsize = 0;
/*
* If this is the first block, output the header.
*/
if (out->firstblock) {
switch (out->type) {
case DEFLATE_TYPE_BARE:
break; /* no header */
case DEFLATE_TYPE_ZLIB:
/*
* zlib (RFC1950) header bytes: 78 9C. (Deflate
* compression, 32K window size, default algorithm.)
*/
outbits(out, 0x9C78, 16);
break;
case DEFLATE_TYPE_GZIP:
/*
* Minimal gzip (RFC1952) header:
*
* - basic header of 1F 8B
* - compression method byte (8 = deflate)
* - flags byte (zero: we use no optional features)
* - modification time (zero: no time stamp available)
* - extra flags byte (2: we use maximum compression
* always)
* - operating system byte (255: we do not specify)
*/
outbits(out, 0x00088B1F, 32); /* header, CM, flags */
outbits(out, 0, 32); /* mtime */
outbits(out, 0xFF02, 16); /* xflags, OS */
break;
}
out->firstblock = FALSE;
}
/*
* Feed our data to the LZ77 compression phase.
*/
lz77_compress(ectx, block, len, TRUE);
/*
* Update checksums and counters.
*/
switch (out->type) {
case DEFLATE_TYPE_ZLIB:
out->checksum = adler32_update(out->checksum, block, len);
break;
case DEFLATE_TYPE_GZIP:
out->checksum = crc32_update(out->checksum, block, len);
break;
}
out->datasize += len;
switch (flushtype) {
/*
* FIXME: what other flush types are available and useful?
* In PuTTY, it was clear that we generally wanted to be in
* a static block so it was safe to open one. Here, we
* probably prefer to be _outside_ a block if we can. Think
* about this.
*/
case DEFLATE_NO_FLUSH:
break; /* don't flush any data at all (duh) */
case DEFLATE_SYNC_FLUSH:
/*
* Close the current block.
*/
flushblock(out);
/*
* Then output an empty _uncompressed_ block: send 000,
* then sync to byte boundary, then send bytes 00 00 FF
* FF.
*/
outbits(out, 0, 3);
if (out->noutbits)
outbits(out, 0, 8 - out->noutbits);
outbits(out, 0, 16);
outbits(out, 0xFFFF, 16);
break;
case DEFLATE_END_OF_DATA:
/*
* Output a block with BFINAL set.
*/
out->lastblock = TRUE;
flushblock(out);
/*
* Sync to byte boundary, flushing out the final byte.
*/
if (out->noutbits)
outbits(out, 0, 8 - out->noutbits);
/*
* Format-specific trailer data.
*/
switch (out->type) {
case DEFLATE_TYPE_ZLIB:
/*
* Just write out the Adler32 checksum.
*/
outbits(out, (out->checksum >> 24) & 0xFF, 8);
outbits(out, (out->checksum >> 16) & 0xFF, 8);
outbits(out, (out->checksum >> 8) & 0xFF, 8);
outbits(out, (out->checksum >> 0) & 0xFF, 8);
break;
case DEFLATE_TYPE_GZIP:
/*
* Write out the CRC32 checksum and the data length.
*/
outbits(out, out->checksum, 32);
outbits(out, out->datasize, 32);
break;
}
out->finished = TRUE;
break;
}
/*
* Return any data that we've generated.
*/
*outblock = (void *)out->outbuf;
*outlen = out->outlen;
}
/* ----------------------------------------------------------------------
* Deflate decompression.
*/
/*
* The way we work the Huffman decode is to have a table lookup on
* the first N bits of the input stream (in the order they arrive,
* of course, i.e. the first bit of the Huffman code is in bit 0).
* Each table entry lists the number of bits to consume, plus
* either an output code or a pointer to a secondary table.
*/
struct table;
struct tableentry;
struct tableentry {
unsigned char nbits;
short code;
struct table *nexttable;
};
struct table {
int mask; /* mask applied to input bit stream */
struct tableentry *table;
};
#define MAXSYMS 288
#define DWINSIZE 32768
/*
* Build a single-level decode table for elements
* [minlength,maxlength) of the provided code/length tables, and
* recurse to build subtables.
*/
static struct table *mkonetab(int *codes, unsigned char *lengths, int nsyms,
int pfx, int pfxbits, int bits)
{
struct table *tab = snew(struct table);
int pfxmask = (1 << pfxbits) - 1;
int nbits, i, j, code;
int bit = 1 << bits;
tab->table = snewn(bit, struct tableentry);
tab->mask = bit - 1;
for (code = 0; code <= tab->mask; code++) {
tab->table[code].code = -1;
tab->table[code].nbits = 0;
tab->table[code].nexttable = NULL;
}
for (i = 0; i < nsyms; i++) {
if (lengths[i] <= pfxbits || (codes[i] & pfxmask) != pfx)
continue;
code = (codes[i] >> pfxbits) & tab->mask;
for (j = code; j <= tab->mask; j += 1 << (lengths[i] - pfxbits)) {
tab->table[j].code = i;
nbits = lengths[i] - pfxbits;
if (tab->table[j].nbits < nbits)
tab->table[j].nbits = nbits;
}
}
for (code = 0; code <= tab->mask; code++) {
if (tab->table[code].nbits <= bits)
continue;
/* Generate a subtable. */
tab->table[code].code = -1;
nbits = tab->table[code].nbits - bits;
if (nbits > 7)
nbits = 7;
tab->table[code].nbits = bits;
tab->table[code].nexttable = mkonetab(codes, lengths, nsyms,
pfx | (code << pfxbits),
pfxbits + bits, nbits);
}
return tab;
}
/*
* Build a decode table, given a set of Huffman tree lengths.
*/
static struct table *mktable(unsigned char *lengths, int nlengths,
#ifdef ANALYSIS
const char *alphabet,
#endif
int *error)
{
int codes[MAXSYMS];
int maxlen;
#ifdef ANALYSIS
if (alphabet && analyse_level > 1) {
int i, col = 0;
printf("code lengths for %s alphabet:\n", alphabet);
for (i = 0; i < nlengths; i++) {
col += printf("%3d", lengths[i]);
if (col > 72) {
putchar('\n');
col = 0;
}
}
if (col > 0)
putchar('\n');
}
#endif
maxlen = hufcodes(lengths, codes, nlengths);
if (maxlen < 0) {
*error = (maxlen == -1 ? DEFLATE_ERR_LARGE_HUFTABLE :
DEFLATE_ERR_SMALL_HUFTABLE);
return NULL;
}
/*
* Now we have the complete list of Huffman codes. Build a
* table.
*/
return mkonetab(codes, lengths, nlengths, 0, 0, maxlen < 9 ? maxlen : 9);
}
static int freetable(struct table **ztab)
{
struct table *tab;
int code;
if (ztab == NULL)
return -1;
if (*ztab == NULL)
return 0;
tab = *ztab;
for (code = 0; code <= tab->mask; code++)
if (tab->table[code].nexttable != NULL)
freetable(&tab->table[code].nexttable);
sfree(tab->table);
tab->table = NULL;
sfree(tab);
*ztab = NULL;
return (0);
}
struct deflate_decompress_ctx {
struct table *staticlentable, *staticdisttable;
struct table *currlentable, *currdisttable, *lenlentable;
enum {
ZLIBSTART,
GZIPSTART, GZIPMETHFLAGS, GZIPIGNORE1, GZIPIGNORE2, GZIPIGNORE3,
GZIPEXTRA, GZIPFNAME, GZIPCOMMENT,
OUTSIDEBLK, TREES_HDR, TREES_LENLEN, TREES_LEN, TREES_LENREP,
INBLK, GOTLENSYM, GOTLEN, GOTDISTSYM,
UNCOMP_LEN, UNCOMP_NLEN, UNCOMP_DATA,
END,
ADLER1, ADLER2,
CRC1, CRC2, ILEN1, ILEN2,
FINALSPIN
} state;
int sym, hlit, hdist, hclen, lenptr, lenextrabits, lenaddon, len,
lenrep, lastblock;
int uncomplen;
unsigned char lenlen[19];
unsigned char lengths[286 + 32];
unsigned long bits;
int nbits;
unsigned char window[DWINSIZE];
int winpos;
unsigned char *outblk;
int outlen, outsize;
int type;
unsigned long checksum;
unsigned long bytesout;
int gzflags, gzextralen;
#ifdef ANALYSIS
int bytesread;
int bitcount_before;
#define BITCOUNT(dctx) ( (dctx)->bytesread * 8 - (dctx)->nbits )
#endif
};
deflate_decompress_ctx *deflate_decompress_new(int type)
{
deflate_decompress_ctx *dctx = snew(deflate_decompress_ctx);
unsigned char lengths[288];
memset(lengths, 8, 144);
memset(lengths + 144, 9, 256 - 144);
memset(lengths + 256, 7, 280 - 256);
memset(lengths + 280, 8, 288 - 280);
dctx->staticlentable = mktable(lengths, 288,
#ifdef ANALYSIS
NULL,
#endif
NULL);
assert(dctx->staticlentable);
memset(lengths, 5, 32);
dctx->staticdisttable = mktable(lengths, 32,
#ifdef ANALYSIS
NULL,
#endif
NULL);
assert(dctx->staticdisttable);
dctx->state = (type == DEFLATE_TYPE_ZLIB ? ZLIBSTART :
type == DEFLATE_TYPE_GZIP ? GZIPSTART :
OUTSIDEBLK);
dctx->currlentable = dctx->currdisttable = dctx->lenlentable = NULL;
dctx->bits = 0;
dctx->nbits = 0;
dctx->winpos = 0;
dctx->type = type;
dctx->lastblock = FALSE;
dctx->checksum = (type == DEFLATE_TYPE_ZLIB ? 1 : 0);
dctx->bytesout = 0;
dctx->gzflags = dctx->gzextralen = 0;
#ifdef ANALYSIS
dctx->bytesread = dctx->bitcount_before = 0;
#endif
return dctx;
}
void deflate_decompress_free(deflate_decompress_ctx *dctx)
{
if (dctx->currlentable && dctx->currlentable != dctx->staticlentable)
freetable(&dctx->currlentable);
if (dctx->currdisttable && dctx->currdisttable != dctx->staticdisttable)
freetable(&dctx->currdisttable);
if (dctx->lenlentable)
freetable(&dctx->lenlentable);
freetable(&dctx->staticlentable);
freetable(&dctx->staticdisttable);
sfree(dctx);
}
static int huflookup(unsigned long *bitsp, int *nbitsp, struct table *tab)
{
unsigned long bits = *bitsp;
int nbits = *nbitsp;
while (1) {
struct tableentry *ent;
ent = &tab->table[bits & tab->mask];
if (ent->nbits > nbits)
return -1; /* not enough data */
bits >>= ent->nbits;
nbits -= ent->nbits;
if (ent->code == -1)
tab = ent->nexttable;
else {
*bitsp = bits;
*nbitsp = nbits;
return ent->code;
}
/*
* If we reach here with `tab' null, it can only be because
* there was a missing entry in the Huffman table. This
* should never occur even with invalid input data, because
* we enforce at mktable time that the Huffman codes should
* precisely cover the code space; so we can enforce this
* by assertion.
*/
assert(tab);
}
}
static void emit_char(deflate_decompress_ctx *dctx, int c)
{
dctx->window[dctx->winpos] = c;
dctx->winpos = (dctx->winpos + 1) & (DWINSIZE - 1);
if (dctx->outlen >= dctx->outsize) {
dctx->outsize = dctx->outlen * 3 / 2 + 512;
dctx->outblk = sresize(dctx->outblk, dctx->outsize, unsigned char);
}
if (dctx->type == DEFLATE_TYPE_ZLIB) {
unsigned char uc = c;
dctx->checksum = adler32_update(dctx->checksum, &uc, 1);
} else if (dctx->type == DEFLATE_TYPE_GZIP) {
unsigned char uc = c;
dctx->checksum = crc32_update(dctx->checksum, &uc, 1);
}
dctx->outblk[dctx->outlen++] = c;
dctx->bytesout++;
}
#define EATBITS(n) ( dctx->nbits -= (n), dctx->bits >>= (n) )
int deflate_decompress_data(deflate_decompress_ctx *dctx,
const void *vblock, int len,
void **outblock, int *outlen)
{
const coderecord *rec;
const unsigned char *block = (const unsigned char *)vblock;
int code, bfinal, btype, rep, dist, nlen, header, cksum;
int error = 0;
if (len == 0) {
*outblock = NULL;
*outlen = 0;
if (dctx->state != FINALSPIN)
return DEFLATE_ERR_UNEXPECTED_EOF;
else
return 0;
}
dctx->outblk = NULL;
dctx->outsize = 0;
dctx->outlen = 0;
while (len > 0 || dctx->nbits > 0) {
while (dctx->nbits < 24 && len > 0) {
dctx->bits |= (*block++) << dctx->nbits;
dctx->nbits += 8;
len--;
#ifdef ANALYSIS
dctx->bytesread++;
#endif
}
switch (dctx->state) {
case ZLIBSTART:
/* Expect 16-bit zlib header. */
if (dctx->nbits < 16)
goto finished; /* done all we can */
/*
* The header is stored as a big-endian 16-bit integer,
* in contrast to the general little-endian policy in
* the rest of the format :-(
*/
header = (((dctx->bits & 0xFF00) >> 8) |
((dctx->bits & 0x00FF) << 8));
EATBITS(16);
/*
* Check the header:
*
* - bits 8-11 should be 1000 (Deflate/RFC1951)
* - bits 12-15 should be at most 0111 (window size)
* - bit 5 should be zero (no dictionary present)
* - we don't care about bits 6-7 (compression rate)
* - bits 0-4 should be set up to make the whole thing
* a multiple of 31 (checksum).
*/
if ((header & 0xF000) > 0x7000 ||
(header & 0x0020) != 0x0000 ||
(header % 31) != 0) {
error = DEFLATE_ERR_ZLIB_HEADER;
goto finished;
}
if ((header & 0x0F00) != 0x0800) {
error = DEFLATE_ERR_ZLIB_WRONGCOMP;
goto finished;
}
dctx->state = OUTSIDEBLK;
break;
case GZIPSTART:
/* Expect 16-bit gzip header. */
if (dctx->nbits < 16)
goto finished;
header = dctx->bits & 0xFFFF;
EATBITS(16);
if (header != 0x8B1F) {
error = DEFLATE_ERR_GZIP_HEADER;
goto finished;
}
dctx->state = GZIPMETHFLAGS;
break;
case GZIPMETHFLAGS:
/* Expect gzip compression method and flags bytes. */
if (dctx->nbits < 16)
goto finished;
header = dctx->bits & 0xFF;
EATBITS(8);
if (header != 8) {
error = DEFLATE_ERR_GZIP_WRONGCOMP;
goto finished;
}
dctx->gzflags = dctx->bits & 0xFF;
if (dctx->gzflags & 2) {
/*
* The FHCRC flag is slightly confusing. RFC1952
* documents it as indicating the presence of a
* two-byte CRC16 of the gzip header, occurring
* just before the beginning of the Deflate stream.
* However, gzip itself (as of 1.3.5) appears to
* believe it indicates that the current gzip
* `member' is not the final one, i.e. that the
* stream is composed of multiple gzip members
* concatenated together, and furthermore gzip will
* refuse to decode any file that has it set.
*
* For this reason, I label it as `disputed' and
* also refuse to decode anything that has it set.
* I don't expect this to be a problem in practice.
*/
error = DEFLATE_ERR_GZIP_FHCRC;
goto finished;
}
EATBITS(8);
dctx->state = GZIPIGNORE1;
break;
case GZIPIGNORE1:
case GZIPIGNORE2:
case GZIPIGNORE3:
/* Expect two bytes of gzip timestamp/XFL/OS, which we ignore. */
if (dctx->nbits < 16)
goto finished;
EATBITS(16);
if (dctx->state == GZIPIGNORE3) {
dctx->state = GZIPEXTRA;
} else
dctx->state++; /* maps IGNORE1 -> IGNORE2 -> IGNORE3 */
break;
case GZIPEXTRA:
if (dctx->gzflags & 4) {
/* Expect two bytes of extra-length count, then that many
* extra bytes of header data, all of which we ignore. */
if (!dctx->gzextralen) {
if (dctx->nbits < 16)
goto finished;
dctx->gzextralen = dctx->bits & 0xFFFF;
EATBITS(16);
break;
} else if (dctx->gzextralen > 0) {
if (dctx->nbits < 8)
goto finished;
EATBITS(8);
if (--dctx->gzextralen > 0)
break;
}
}
dctx->state = GZIPFNAME;
break;
case GZIPFNAME:
if (dctx->gzflags & 8) {
/*
* Expect a NUL-terminated filename.
*/
if (dctx->nbits < 8)
goto finished;
code = dctx->bits & 0xFF;
EATBITS(8);
} else
code = 0;
if (code == 0)
dctx->state = GZIPCOMMENT;
break;
case GZIPCOMMENT:
if (dctx->gzflags & 16) {
/*
* Expect a NUL-terminated filename.
*/
if (dctx->nbits < 8)
goto finished;
code = dctx->bits & 0xFF;
EATBITS(8);
} else
code = 0;
if (code == 0)
dctx->state = OUTSIDEBLK;
break;
case OUTSIDEBLK:
/* Expect 3-bit block header. */
if (dctx->nbits < 3)
goto finished; /* done all we can */
bfinal = dctx->bits & 1;
if (bfinal)
dctx->lastblock = TRUE;
EATBITS(1);
btype = dctx->bits & 3;
EATBITS(2);
if (btype == 0) {
int to_eat = dctx->nbits & 7;
dctx->state = UNCOMP_LEN;
EATBITS(to_eat); /* align to byte boundary */
} else if (btype == 1) {
dctx->currlentable = dctx->staticlentable;
dctx->currdisttable = dctx->staticdisttable;
dctx->state = INBLK;
} else if (btype == 2) {
dctx->state = TREES_HDR;
}
debug(("recv: bfinal=%d btype=%d\n", bfinal, btype));
#ifdef ANALYSIS
if (analyse_level > 1) {
static const char *const btypes[] = {
"uncompressed", "static", "dynamic", "type 3 (unknown)"
};
printf("new block, %sfinal, %s\n",
bfinal ? "" : "not ",
btypes[btype]);
}
#endif
break;
case TREES_HDR:
/*
* Dynamic block header. Five bits of HLIT, five of
* HDIST, four of HCLEN.
*/
if (dctx->nbits < 5 + 5 + 4)
goto finished; /* done all we can */
dctx->hlit = 257 + (dctx->bits & 31);
EATBITS(5);
dctx->hdist = 1 + (dctx->bits & 31);
EATBITS(5);
dctx->hclen = 4 + (dctx->bits & 15);
EATBITS(4);
debug(("recv: hlit=%d hdist=%d hclen=%d\n", dctx->hlit,
dctx->hdist, dctx->hclen));
#ifdef ANALYSIS
if (analyse_level > 1)
printf("hlit=%d, hdist=%d, hclen=%d\n",
dctx->hlit, dctx->hdist, dctx->hclen);
#endif
dctx->lenptr = 0;
dctx->state = TREES_LENLEN;
memset(dctx->lenlen, 0, sizeof(dctx->lenlen));
break;
case TREES_LENLEN:
if (dctx->nbits < 3)
goto finished;
while (dctx->lenptr < dctx->hclen && dctx->nbits >= 3) {
dctx->lenlen[lenlenmap[dctx->lenptr++]] =
(unsigned char) (dctx->bits & 7);
debug(("recv: lenlen %d\n", (unsigned char) (dctx->bits & 7)));
EATBITS(3);
}
if (dctx->lenptr == dctx->hclen) {
dctx->lenlentable = mktable(dctx->lenlen, 19,
#ifdef ANALYSIS
"code length",
#endif
&error);
if (!dctx->lenlentable)
goto finished; /* error code set up by mktable */
dctx->state = TREES_LEN;
dctx->lenptr = 0;
}
break;
case TREES_LEN:
if (dctx->lenptr >= dctx->hlit + dctx->hdist) {
dctx->currlentable = mktable(dctx->lengths, dctx->hlit,
#ifdef ANALYSIS
"literal/length",
#endif
&error);
if (!dctx->currlentable)
goto finished; /* error code set up by mktable */
dctx->currdisttable = mktable(dctx->lengths + dctx->hlit,
dctx->hdist,
#ifdef ANALYSIS
"distance",
#endif
&error);
if (!dctx->currdisttable)
goto finished; /* error code set up by mktable */
freetable(&dctx->lenlentable);
dctx->lenlentable = NULL;
dctx->state = INBLK;
break;
}
code = huflookup(&dctx->bits, &dctx->nbits, dctx->lenlentable);
debug(("recv: codelen %d\n", code));
if (code == -1)
goto finished;
if (code < 16) {
#ifdef ANALYSIS
if (analyse_level > 1)
printf("code-length %d\n", code);
#endif
dctx->lengths[dctx->lenptr++] = code;
} else {
dctx->lenextrabits = (code == 16 ? 2 : code == 17 ? 3 : 7);
dctx->lenaddon = (code == 18 ? 11 : 3);
dctx->lenrep = (code == 16 && dctx->lenptr > 0 ?
dctx->lengths[dctx->lenptr - 1] : 0);
dctx->state = TREES_LENREP;
}
break;
case TREES_LENREP:
if (dctx->nbits < dctx->lenextrabits)
goto finished;
rep =
dctx->lenaddon +
(dctx->bits & ((1 << dctx->lenextrabits) - 1));
EATBITS(dctx->lenextrabits);
if (dctx->lenextrabits)
debug(("recv: codelen-extrabits %d/%d\n", rep - dctx->lenaddon,
dctx->lenextrabits));
#ifdef ANALYSIS
if (analyse_level > 1)
printf("code-length-repeat: %d copies of %d\n", rep,
dctx->lenrep);
#endif
while (rep > 0 && dctx->lenptr < dctx->hlit + dctx->hdist) {
dctx->lengths[dctx->lenptr] = dctx->lenrep;
dctx->lenptr++;
rep--;
}
dctx->state = TREES_LEN;
break;
case INBLK:
#ifdef ANALYSIS
dctx->bitcount_before = BITCOUNT(dctx);
#endif
code = huflookup(&dctx->bits, &dctx->nbits, dctx->currlentable);
debug(("recv: litlen %d\n", code));
if (code == -1)
goto finished;
if (code < 256) {
#ifdef ANALYSIS
if (analyse_level > 0)
printf("%lu: literal %d [%d]\n", dctx->bytesout, code,
BITCOUNT(dctx) - dctx->bitcount_before);
#endif
emit_char(dctx, code);
} else if (code == 256) {
if (dctx->lastblock)
dctx->state = END;
else
dctx->state = OUTSIDEBLK;
if (dctx->currlentable != dctx->staticlentable) {
freetable(&dctx->currlentable);
dctx->currlentable = NULL;
}
if (dctx->currdisttable != dctx->staticdisttable) {
freetable(&dctx->currdisttable);
dctx->currdisttable = NULL;
}
} else if (code < 286) { /* static tree can give >285; ignore */
dctx->state = GOTLENSYM;
dctx->sym = code;
}
break;
case GOTLENSYM:
rec = &lencodes[dctx->sym - 257];
if (dctx->nbits < rec->extrabits)
goto finished;
dctx->len =
rec->min + (dctx->bits & ((1 << rec->extrabits) - 1));
if (rec->extrabits)
debug(("recv: litlen-extrabits %d/%d\n",
dctx->len - rec->min, rec->extrabits));
EATBITS(rec->extrabits);
dctx->state = GOTLEN;
break;
case GOTLEN:
code = huflookup(&dctx->bits, &dctx->nbits, dctx->currdisttable);
debug(("recv: dist %d\n", code));
if (code == -1)
goto finished;
dctx->state = GOTDISTSYM;
dctx->sym = code;
break;
case GOTDISTSYM:
rec = &distcodes[dctx->sym];
if (dctx->nbits < rec->extrabits)
goto finished;
dist = rec->min + (dctx->bits & ((1 << rec->extrabits) - 1));
if (rec->extrabits)
debug(("recv: dist-extrabits %d/%d\n",
dist - rec->min, rec->extrabits));
EATBITS(rec->extrabits);
dctx->state = INBLK;
#ifdef ANALYSIS
if (analyse_level > 0)
printf("%lu: copy len=%d dist=%d [%d]\n", dctx->bytesout,
dctx->len, dist,
BITCOUNT(dctx) - dctx->bitcount_before);
#endif
while (dctx->len--)
emit_char(dctx, dctx->window[(dctx->winpos - dist) &
(DWINSIZE - 1)]);
break;
case UNCOMP_LEN:
/*
* Uncompressed block. We expect to see a 16-bit LEN.
*/
if (dctx->nbits < 16)
goto finished;
dctx->uncomplen = dctx->bits & 0xFFFF;
EATBITS(16);
dctx->state = UNCOMP_NLEN;
break;
case UNCOMP_NLEN:
/*
* Uncompressed block. We expect to see a 16-bit NLEN,
* which should be the one's complement of the previous
* LEN.
*/
if (dctx->nbits < 16)
goto finished;
nlen = dctx->bits & 0xFFFF;
EATBITS(16);
if (dctx->uncomplen == 0)
dctx->state = OUTSIDEBLK; /* block is empty */
else
dctx->state = UNCOMP_DATA;
break;
case UNCOMP_DATA:
if (dctx->nbits < 8)
goto finished;
#ifdef ANALYSIS
if (analyse_level > 0)
printf("%lu: uncompressed %d [8]\n", dctx->bytesout,
(int)(dctx->bits & 0xFF));
#endif
emit_char(dctx, dctx->bits & 0xFF);
EATBITS(8);
if (--dctx->uncomplen == 0)
dctx->state = OUTSIDEBLK; /* end of uncompressed block */
break;
case END:
/*
* End of compressed data. We align to a byte boundary,
* and then look for format-specific trailer data.
*/
{
int to_eat = dctx->nbits & 7;
EATBITS(to_eat);
}
if (dctx->type == DEFLATE_TYPE_ZLIB)
dctx->state = ADLER1;
else if (dctx->type == DEFLATE_TYPE_GZIP)
dctx->state = CRC1;
else
dctx->state = FINALSPIN;
break;
case ADLER1:
if (dctx->nbits < 16)
goto finished;
cksum = (dctx->bits & 0xFF) << 8;
EATBITS(8);
cksum |= (dctx->bits & 0xFF);
EATBITS(8);
if (cksum != ((dctx->checksum >> 16) & 0xFFFF)) {
error = DEFLATE_ERR_CHECKSUM;
goto finished;
}
dctx->state = ADLER2;
break;
case ADLER2:
if (dctx->nbits < 16)
goto finished;
cksum = (dctx->bits & 0xFF) << 8;
EATBITS(8);
cksum |= (dctx->bits & 0xFF);
EATBITS(8);
if (cksum != (dctx->checksum & 0xFFFF)) {
error = DEFLATE_ERR_CHECKSUM;
goto finished;
}
dctx->state = FINALSPIN;
break;
case CRC1:
if (dctx->nbits < 16)
goto finished;
cksum = dctx->bits & 0xFFFF;
EATBITS(16);
if (cksum != (dctx->checksum & 0xFFFF)) {
error = DEFLATE_ERR_CHECKSUM;
goto finished;
}
dctx->state = CRC2;
break;
case CRC2:
if (dctx->nbits < 16)
goto finished;
cksum = dctx->bits & 0xFFFF;
EATBITS(16);
if (cksum != ((dctx->checksum >> 16) & 0xFFFF)) {
error = DEFLATE_ERR_CHECKSUM;
goto finished;
}
dctx->state = ILEN1;
break;
case ILEN1:
if (dctx->nbits < 16)
goto finished;
cksum = dctx->bits & 0xFFFF;
EATBITS(16);
if (cksum != (dctx->bytesout & 0xFFFF)) {
error = DEFLATE_ERR_INLEN;
goto finished;
}
dctx->state = ILEN2;
break;
case ILEN2:
if (dctx->nbits < 16)
goto finished;
cksum = dctx->bits & 0xFFFF;
EATBITS(16);
if (cksum != ((dctx->bytesout >> 16) & 0xFFFF)) {
error = DEFLATE_ERR_INLEN;
goto finished;
}
dctx->state = FINALSPIN;
break;
case FINALSPIN:
/* Just ignore any trailing garbage on the data stream. */
/* (We could alternatively throw an error here, if we wanted
* to detect and complain about trailing garbage.) */
EATBITS(dctx->nbits);
break;
}
}
finished:
*outblock = dctx->outblk;
*outlen = dctx->outlen;
return error;
}
#define A(code,str) str
const char *const deflate_error_msg[DEFLATE_NUM_ERRORS] = {
DEFLATE_ERRORLIST(A)
};
#undef A
#define A(code,str) #code
const char *const deflate_error_sym[DEFLATE_NUM_ERRORS] = {
DEFLATE_ERRORLIST(A)
};
#undef A
#ifdef STANDALONE
int main(int argc, char **argv)
{
unsigned char buf[65536];
void *outbuf;
int ret, err, outlen;
deflate_decompress_ctx *dhandle;
deflate_compress_ctx *chandle;
int type = DEFLATE_TYPE_ZLIB, opts = TRUE;
int compress = FALSE, decompress = FALSE;
int got_arg = FALSE;
char *filename = NULL;
FILE *fp;
while (--argc) {
char *p = *++argv;
got_arg = TRUE;
if (p[0] == '-' && opts) {
if (!strcmp(p, "-b"))
type = DEFLATE_TYPE_BARE;
else if (!strcmp(p, "-g"))
type = DEFLATE_TYPE_GZIP;
else if (!strcmp(p, "-c"))
compress = TRUE;
else if (!strcmp(p, "-d"))
decompress = TRUE;
else if (!strcmp(p, "-a"))
analyse_level++, decompress = TRUE;
else if (!strcmp(p, "--"))
opts = FALSE; /* next thing is filename */
else {
fprintf(stderr, "unknown command line option '%s'\n", p);
return 1;
}
} else if (!filename) {
filename = p;
} else {
fprintf(stderr, "can only handle one filename\n");
return 1;
}
}
if (!compress && !decompress) {
fprintf(stderr, "usage: deflate [ -c | -d | -a ] [ -b | -g ]"
" [filename]\n");
return (got_arg ? 1 : 0);
}
if (compress && decompress) {
fprintf(stderr, "please do not specify both compression and"
" decompression\n");
return (got_arg ? 1 : 0);
}
if (compress) {
chandle = deflate_compress_new(type);
dhandle = NULL;
} else {
dhandle = deflate_decompress_new(type);
chandle = NULL;
}
if (filename)
fp = fopen(filename, "rb");
else
fp = stdin;
if (!fp) {
assert(filename);
fprintf(stderr, "unable to open '%s'\n", filename);
return 1;
}
do {
ret = fread(buf, 1, sizeof(buf), fp);
outbuf = NULL;
if (dhandle) {
if (ret > 0)
err = deflate_decompress_data(dhandle, buf, ret,
(void **)&outbuf, &outlen);
else
err = deflate_decompress_data(dhandle, NULL, 0,
(void **)&outbuf, &outlen);
} else {
if (ret > 0)
deflate_compress_data(chandle, buf, ret, DEFLATE_NO_FLUSH,
(void **)&outbuf, &outlen);
else
deflate_compress_data(chandle, buf, ret, DEFLATE_END_OF_DATA,
(void **)&outbuf, &outlen);
err = 0;
}
if (outbuf) {
if (!analyse_level && outlen)
fwrite(outbuf, 1, outlen, stdout);
sfree(outbuf);
}
if (err > 0) {
fprintf(stderr, "decoding error: %s\n", deflate_error_msg[err]);
return 1;
}
} while (ret > 0);
if (dhandle)
deflate_decompress_free(dhandle);
if (chandle)
deflate_compress_free(chandle);
if (filename)
fclose(fp);
return 0;
}
#endif
#ifdef TESTMODE
int main(int argc, char **argv)
{
char *filename = NULL;
FILE *fp;
deflate_compress_ctx *chandle;
deflate_decompress_ctx *dhandle;
unsigned char buf[65536], *outbuf, *outbuf2;
int ret, err, outlen, outlen2;
int dlen = 0, clen = 0;
int opts = TRUE;
while (--argc) {
char *p = *++argv;
if (p[0] == '-' && opts) {
if (!strcmp(p, "--"))
opts = FALSE; /* next thing is filename */
else {
fprintf(stderr, "unknown command line option '%s'\n", p);
return 1;
}
} else if (!filename) {
filename = p;
} else {
fprintf(stderr, "can only handle one filename\n");
return 1;
}
}
if (filename)
fp = fopen(filename, "rb");
else
fp = stdin;
if (!fp) {
assert(filename);
fprintf(stderr, "unable to open '%s'\n", filename);
return 1;
}
chandle = deflate_compress_new(DEFLATE_TYPE_ZLIB);
dhandle = deflate_decompress_new(DEFLATE_TYPE_ZLIB);
do {
ret = fread(buf, 1, sizeof(buf), fp);
if (ret <= 0) {
deflate_compress_data(chandle, NULL, 0, DEFLATE_END_OF_DATA,
(void **)&outbuf, &outlen);
} else {
dlen += ret;
deflate_compress_data(chandle, buf, ret, DEFLATE_NO_FLUSH,
(void **)&outbuf, &outlen);
}
if (outbuf) {
clen += outlen;
err = deflate_decompress_data(dhandle, outbuf, outlen,
(void **)&outbuf2, &outlen2);
sfree(outbuf);
if (outbuf2) {
if (outlen2)
fwrite(outbuf2, 1, outlen2, stdout);
sfree(outbuf2);
}
if (!err && ret <= 0) {
/*
* signal EOF
*/
err = deflate_decompress_data(dhandle, NULL, 0,
(void **)&outbuf2, &outlen2);
assert(outbuf2 == NULL);
}
if (err) {
fprintf(stderr, "decoding error: %s\n",
deflate_error_msg[err]);
return 1;
}
}
} while (ret > 0);
fprintf(stderr, "%d plaintext -> %d compressed\n", dlen, clen);
return 0;
}
#endif
|