1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
/* Timed mutexes (native Windows implementation).
Copyright (C) 2005-2024 Free Software Foundation, Inc.
This file is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This file is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
/* Written by Bruno Haible <bruno@clisp.org>, 2005, 2019.
Based on GCC's gthr-win32.h. */
#include <config.h>
/* Specification. */
#include "windows-timedmutex.h"
#include <errno.h>
#include <stdlib.h>
#include <sys/time.h>
/* Don't assume that UNICODE is not defined. */
#undef CreateEvent
#define CreateEvent CreateEventA
int
glwthread_timedmutex_init (glwthread_timedmutex_t *mutex)
{
/* Attempt to allocate an auto-reset event object. */
/* CreateEvent
<https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-createeventa> */
HANDLE event = CreateEvent (NULL, FALSE, FALSE, NULL);
if (event == INVALID_HANDLE_VALUE)
return EAGAIN;
mutex->event = event;
mutex->owner = 0;
InitializeCriticalSection (&mutex->lock);
mutex->guard.done = 1;
return 0;
}
int
glwthread_timedmutex_lock (glwthread_timedmutex_t *mutex)
{
if (!mutex->guard.done)
{
if (InterlockedIncrement (&mutex->guard.started) == 0)
{
/* This thread is the first one to need this mutex.
Initialize it. */
int err = glwthread_timedmutex_init (mutex);
if (err != 0)
{
/* Undo increment. */
InterlockedDecrement (&mutex->guard.started);
return err;
}
}
else
{
/* Don't let mutex->guard.started grow and wrap around. */
InterlockedDecrement (&mutex->guard.started);
/* Yield the CPU while waiting for another thread to finish
initializing this mutex. */
while (!mutex->guard.done)
Sleep (0);
}
}
/* If this thread already owns the mutex, POSIX pthread_mutex_lock() is
required to deadlock here. But let's not do that on purpose. */
EnterCriticalSection (&mutex->lock);
{
DWORD self = GetCurrentThreadId ();
mutex->owner = self;
}
return 0;
}
int
glwthread_timedmutex_trylock (glwthread_timedmutex_t *mutex)
{
if (!mutex->guard.done)
{
if (InterlockedIncrement (&mutex->guard.started) == 0)
{
/* This thread is the first one to need this mutex.
Initialize it. */
int err = glwthread_timedmutex_init (mutex);
if (err != 0)
{
/* Undo increment. */
InterlockedDecrement (&mutex->guard.started);
return err;
}
}
else
{
/* Don't let mutex->guard.started grow and wrap around. */
InterlockedDecrement (&mutex->guard.started);
/* Let another thread finish initializing this mutex, and let it also
lock this mutex. */
return EBUSY;
}
}
if (!TryEnterCriticalSection (&mutex->lock))
return EBUSY;
{
DWORD self = GetCurrentThreadId ();
/* TryEnterCriticalSection succeeded. This means that the mutex was either
previously unlocked (and thus mutex->owner == 0) or previously locked by
this thread (and thus mutex->owner == self). Since the mutex is meant to
be plain, we need to fail in the latter case. */
if (mutex->owner == self)
{
LeaveCriticalSection (&mutex->lock);
return EBUSY;
}
if (mutex->owner != 0)
abort ();
mutex->owner = self;
}
return 0;
}
int
glwthread_timedmutex_timedlock (glwthread_timedmutex_t *mutex,
const struct timespec *abstime)
{
if (!mutex->guard.done)
{
if (InterlockedIncrement (&mutex->guard.started) == 0)
{
/* This thread is the first one to need this mutex.
Initialize it. */
int err = glwthread_timedmutex_init (mutex);
if (err != 0)
{
/* Undo increment. */
InterlockedDecrement (&mutex->guard.started);
return err;
}
}
else
{
/* Don't let mutex->guard.started grow and wrap around. */
InterlockedDecrement (&mutex->guard.started);
/* Yield the CPU while waiting for another thread to finish
initializing this mutex. */
while (!mutex->guard.done)
Sleep (0);
}
}
/* POSIX says:
"Under no circumstance shall the function fail with a timeout if
the mutex can be locked immediately. The validity of the abstime
parameter need not be checked if the mutex can be locked
immediately."
Therefore start the loop with a TryEnterCriticalSection call. */
for (;;)
{
if (TryEnterCriticalSection (&mutex->lock))
break;
{
struct timeval currtime;
DWORD timeout;
DWORD result;
gettimeofday (&currtime, NULL);
/* Wait until another thread signals the event or until the
abstime passes. */
if (currtime.tv_sec > abstime->tv_sec)
timeout = 0;
else
{
unsigned long seconds = abstime->tv_sec - currtime.tv_sec;
timeout = seconds * 1000;
if (timeout / 1000 != seconds) /* overflow? */
timeout = INFINITE;
else
{
long milliseconds =
abstime->tv_nsec / 1000000 - currtime.tv_usec / 1000;
if (milliseconds >= 0)
{
timeout += milliseconds;
if (timeout < milliseconds) /* overflow? */
timeout = INFINITE;
}
else
{
if (timeout >= - milliseconds)
timeout -= (- milliseconds);
else
timeout = 0;
}
}
}
if (timeout == 0)
return ETIMEDOUT;
/* WaitForSingleObject
<https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-waitforsingleobject> */
result = WaitForSingleObject (mutex->event, timeout);
if (result == WAIT_FAILED)
abort ();
if (result == WAIT_TIMEOUT)
return ETIMEDOUT;
/* Another thread has just unlocked the mutex. We have good chances at
locking it now. */
}
}
{
DWORD self = GetCurrentThreadId ();
/* TryEnterCriticalSection succeeded. This means that the mutex was either
previously unlocked (and thus mutex->owner == 0) or previously locked by
this thread (and thus mutex->owner == self). Since the mutex is meant to
be plain, it is useful to fail in the latter case. */
if (mutex->owner == self)
{
LeaveCriticalSection (&mutex->lock);
return EDEADLK;
}
if (mutex->owner != 0)
abort ();
mutex->owner = self;
}
return 0;
}
int
glwthread_timedmutex_unlock (glwthread_timedmutex_t *mutex)
{
if (!mutex->guard.done)
return EINVAL;
mutex->owner = 0;
LeaveCriticalSection (&mutex->lock);
/* Notify one of the threads that were waiting with a timeout. */
/* SetEvent
<https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-setevent> */
SetEvent (mutex->event);
return 0;
}
int
glwthread_timedmutex_destroy (glwthread_timedmutex_t *mutex)
{
if (!mutex->guard.done)
return EINVAL;
DeleteCriticalSection (&mutex->lock);
/* CloseHandle
<https://docs.microsoft.com/en-us/windows/desktop/api/handleapi/nf-handleapi-closehandle> */
CloseHandle (mutex->event);
mutex->guard.done = 0;
return 0;
}
|